The goal of the present investigation was to assess the relative involvement of nicotinic and muscarinic cholinergic receptors in the neuronal control of catecholamine secretion from the chromaffin tissue of rainbow trout (Oncorhynchus mykiss). This was accomplished by first developing and validating a nerve-stimulating technique able specifically to activate the nerve fibres innervating the chromaffin cells in order to elicit secretion of catecholamines. Using an in situ saline-perfused posterior cardinal vein preparation, it was demonstrated that whole-body field stimulation caused specific voltage-dependent neuronal stimulation of adrenaline and noradrenaline secretion. The contribution of non-specific depolarization was negligible. Several experimental results confirmed the specificity of the field stimulation technique. First, pre-treatment with neostigmine (an anticholinesterase) prolonged and more than doubled the amount of adrenaline secreted in response to electrical stimulation. Second, pre-treatment with the nicotinic receptor antagonist hexamethonium inhibited the electrically evoked secretion of adrenaline and noradrenaline. Third, perfusion with Na+-free saline or removal of the spinal cord abolished secretion of both catecholamines in response to the electrical stimulus. By using the field stimulation technique, this study is the first to demonstrate conclusively a role for muscarinic receptors in catecholamine secretion from trout chromaffin cells. Specifically, muscarinic cholinergic stimulation enhances nicotinic-evoked secretion of catecholamines and, under intense stimulation, may directly cause secretion. The results of the present study suggest the presence of muscarinic receptors on rainbow trout chromaffin cells with a functional role in the cholinergic control of catecholamine secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.202.15.2059 | DOI Listing |
Am J Physiol Regul Integr Comp Physiol
January 2025
Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
Hypoxia at high altitude can constrain aerobic metabolism and elicit physiological responses that are detrimental to health and fitness. Responses of the sympathoadrenal system are vital for coping with acute hypoxia, but can become maladaptive with prolonged activation in chronic hypoxia. We examined how adrenal function is altered in high-altitude populations of deer mice (), which have evolved to overcome chronic hypoxia in their native environment.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
January 2025
Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA.
Vasoplegia is a pathophysiologic state of hypotension in the setting of normal or high cardiac output and low systemic vascular resistance despite euvolemia and high-dose vasoconstrictors. Vasoplegia in heart, lung, or liver transplantation is of particular interest because it is common (approximately 29%, 28%, and 11%, respectively), is associated with adverse outcomes, and because the agents used to treat vasoplegia can affect immunosuppressive and other drug metabolism. This narrative review discusses the pathophysiology, risk factors, and treatment of vasoplegia in patients undergoing heart, lung, and liver transplantation.
View Article and Find Full Text PDFBest Pract Res Clin Endocrinol Metab
January 2025
Department of Endocrine Neoplasia and HormonalDisorders, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA. Electronic address:
Pheochromocytomas and paragangliomas are rare neuroendocrine tumors derived from the paraganglia. These tumors frequently secrete excessive amounts of catecholamines leading to cardiovascular and gastrointestinal complications. While all pheochromocytomas and paragangliomas possess the potential for metastasis, actual metastatic occurrences are observed in approximately one third of cases.
View Article and Find Full Text PDFPsychiatr Clin North Am
March 2025
Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, MD, USA.
The pathophysiology of tic disorders involves an alteration in the transmission of messages through the cortico-basal ganglia-thalamo-cortical circuit. A major requirement for the passage of a message through this circuit is an intact chemically mediated synaptic neurotransmitter system (ie, neurotransmitters and second messengers). This article reviews the scientific evidence supporting the involvement of a variety of neurotransmitters (ie, dopamine, glutamate, gamma-aminobutyric acid, serotonin, acetylcholine, and the opioid system).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!