F0F1-ATP synthase uses proton-motive force to produce ATP from ADP and Pi. With regard to its rotary mechanics, this energy transducing molecular machine assumes a unique position among all enzymes. In the work presented here we put forward a detailed functional model which is based on experimental results obtained with ATP synthase from spinach chloroplasts. We focus on the role of the elastic element, realized by the stalk-like subunit gamma, whose function is energy transduction between F0 and F1 taking into account the H+/ATP coupling ratio of four. Fitting parameters are the rate constants and the torsional rigidity of gamma, which have been adjusted according to the experimental results where the influence of transmembrane DeltapH on the rates of ATP synthesis/hydrolysis is put to the test. We show that the input and output of torsional energy are regulated by purely statistical principles, giving rise to the amount of transiently stored energy to be sliding, depending on DeltapH. During conditions of maximal turnover gamma turns out to be wound up towards 102 degrees which corresponds to a torque of 5.3. 10-20 N.m.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0005-2728(99)00059-6 | DOI Listing |
Biotechnol J
January 2025
Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Food Science and Engineering, Bohai University, 121013, Jinzhou, PR China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, 121013, Jinzhou, PR China. Electronic address:
Significant losses of vegetables and fruits occur at multiple stages, including harvest, sorting, storage, and transportation, primarily due to mechanical damage, pathogen invasion, and the natural process of senescence. To mitigate postharvest decay and maintain superior quality of produce, conventional techniques such as low temperature storage and synthetic fungicide treatment are widely employed. Acibenzolar-S-methyl (ASM), an effective plant resistance inducers, has demonstrated its efficacy in protecting against a diverse range of fungal and bacterial pathogens.
View Article and Find Full Text PDFSci Rep
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China.
This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Molecules
January 2025
College of Life Science, Liaoning Normal University, Dalian 116081, China.
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin-GHSR1a signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!