Colony-stimulating factor-1 (CSF-1) activation of the CSF-1 receptor (CSF-1R) causes Cbl protooncoprotein tyrosine phosphorylation, Cbl-CSF-1R association and their simultaneous multiubiquitination at the plasma membrane. The CSF-1R is then rapidly internalized and degraded, whereas Cbl is deubiquitinated in the cytoplasm without being degraded. We have used primary macrophages from gene-targeted mice to study the role of Cbl. Cbl-/- macrophages form denser colonies and, at limiting CSF-1 concentrations, proliferate faster than Cbl+/+ macrophages. Their CSF-1Rs fail to exhibit multiubiquitination and a second wave of tyrosine phosphorylation previously suggested to be involved in preparation of the CSF-1-CSF-1R complex for endocytosis. Consistent with this result, Cbl-/- macrophage cell surface CSF-1-CSF-1R complexes are internalized more slowly, yet are still lysosomally degraded, and the CSF-1 utilization by Cbl-/- macrophages is reduced approximately 2-fold. Thus, attenuation of proliferation by Cbl is associated with its positive regulation of the coordinated multiubiquitination and endocytosis of the activated CSF-1R, and a reduction in the time that the CSF-1R signals from the cell surface. The results provide a paradigm for studies of the mechanisms underlying Cbl attenuation of proliferative responses induced by ligation of receptor tyrosine kinases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171440 | PMC |
http://dx.doi.org/10.1093/emboj/18.13.3616 | DOI Listing |
Virology
March 2009
Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) plays a key role in regulating viral latency and EBV pathogenesis by functionally mimicking signals induced by the B-cell receptor (BCR) altering normal B cell development. As c-Cbl ubiquitin ligase (E3) is a critical negative regulator in the BCR signal pathway, the role of c-Cbl in the function and formation of the LMP2A signalosome was examined. c-Cbl promoted LMP2A degradation through ubiquitination, specifically degraded the Syk protein tyrosine kinase in the presence of LMP2A, and inhibited LMP2A induction of the EBV lytic cycle.
View Article and Find Full Text PDFJ Cell Biol
November 2005
Faculté de Médecine Lyon-Sud, Institut National de la Santé et la Recherche Médicale, F-69921 Oullins Cedex, France.
The proto-oncoprotein Cbl is known to control several signaling processes. It is highly expressed in the testis, and because spermatogenesis is androgen dependent, we investigated the androgen dependency expression of Cbl through its testicular sub-localization and its expression levels in rats that were exposed to the antiandrogen flutamide or were hypophysectomized. We report the androgen dependency of Cbl as it localizes in pachytene spermatocytes during androgen-dependent stages, is down-regulated upon flutamide exposure, and is up-regulated with testosterone in hypophysectomized rats.
View Article and Find Full Text PDFCell Signal
August 2006
INSERM U.672 (ex U.354), Immunochimie des Régulations Cellulaires et des Interactions Virales, Bâtiment G8, Campus 1, 5 rue Henri Desbruères, Génopole d'Evry, 91030, EVRY Cedex, France.
It is well established that CD21 activation on human B cell surface triggers B cell proliferation. We previously demonstrated that CD21 activation also triggers tyrosine phosphorylation of two components, p95 and p120, both interacting with SH2 domains of the p85 subunit of PI 3-kinase. We successively identified p95 as the nucleolin and the first signal transduction pathway specifically triggered by CD21 activation, i.
View Article and Find Full Text PDFMol Biol Cell
November 2003
Department of Pathology, University of Western Australia, Crawley, WA 6009, Australia.
A number of key cellular functions, such as morphological differentiation and cell motility, are closely associated with changes in cytoskeletal dynamics. Many of the principal signaling components involved in actin cytoskeletal dynamics have been identified, and these have been shown to be critically involved in cell motility. In contrast, signaling to microtubules remains relatively uncharacterized, and the importance of signaling pathways in modulation of microtubule dynamics has so far not been established clearly.
View Article and Find Full Text PDFFront Biosci
September 2003
Department of Anatomy and Physiology, Lipid Research Unit, Laval University Hospital Research Center, Ste-Foy, Québec, G1V 4G2, Canada.
Glucose transport across the cell surface is a key regulatory step for glucose metabolism in skeletal muscle. Both insulin and exercise increase glucose transport into myofibers through glucose transporter (GLUT) proteins. Skeletal muscle expresses several members of the GLUT family but the GLUT4 glucose transporter is considered the main "regulatable" isoform that is modulated by insulin and contraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!