Osteocalcin binds tightly to the gamma-glutamylcarboxylase at a site distinct from that of the other known vitamin K-dependent proteins.

Biochem J

Department of Biochemistry and Cardiovascular Research Institute, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.

Published: July 1999

Vitamin K-dependent proteins contain a propeptide that is required for recognition by the enzyme gamma-glutamylcarboxylase. Substrates used in vitro for carboxylation studies lacking a prosequence are characterized by Km values in the millimolar range, whereas the Km for peptides containing a prosequence is three or four orders of magnitude smaller. Here we report that descarboxy-osteocalcin is an exception in this respect. With descarboxy-osteocalcin in purified propeptide-free recombinant carboxylase, the Km was 1.8 microM. Furthermore, osteocalcin was an inhibitor of descarboxy-osteocalcin carboxylation with a Ki of 76 microM. In contrast with the other vitamin K-dependent proteins, free propeptides do not inhibit descarboxy-osteocalcin carboxylation. Moreover, propeptide-containing substrates were inhibited neither by osteocalcin nor by its propeptide. From our studies we conclude that descarboxy-osteocalcin must have an internal recognition sequence that binds to gamma-glutamylcarboxylase at a site different from the propeptide-recognition site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220355PMC

Publication Analysis

Top Keywords

vitamin k-dependent
12
k-dependent proteins
12
gamma-glutamylcarboxylase site
8
descarboxy-osteocalcin carboxylation
8
descarboxy-osteocalcin
5
osteocalcin binds
4
binds tightly
4
tightly gamma-glutamylcarboxylase
4
site distinct
4
distinct vitamin
4

Similar Publications

γ-Glutamyl carboxylase (GGCX) is the sole identified enzyme that uses vitamin K (VK) as a cofactor in humans. This protein catalyses the oxidation of VK hydroquinone to convert specific glutamate residues to γ-carboxyglutamate residues in VK-dependent proteins (VDPs), which are involved in various essential biological processes and diseases. However, the working mechanism of GGCX remains unclear.

View Article and Find Full Text PDF

Background/objectives: Vitamin K-dependent proteins (VKDPs) all commonly possess specially modified γ-carboxyglutamic acid residues created in a vitamin K-dependent manner. Several liver-derived coagulation factors are well characterised VKDPs. However, much less is known about extrahepatic VKDPs, which are more diverse in their molecular structures and functions, and some of which have been implicated in inflammatory disorders.

View Article and Find Full Text PDF

: Vitamin K deficiency in chronic kidney disease (CKD) could potentially occur due to multiple factors, leading to an increased risk of vascular and valvular calcifications. Vitamin K status can be indirectly assessed by measuring the blood levels of vitamin K-dependent proteins (VKDPs), such as matrix GLA protein (MGP). This study aims to examine the relationship between the levels of inactive MGP (dp-uc MGP) and the presence of valvular calcifications, as well as its association with mortality in hemodialysis patients.

View Article and Find Full Text PDF

Vitamin K-dependent gamma-carboxyglutamic acid protein 1 promotes pancreatic ductal adenocarcinoma progression through stabilizing oncoprotein KRAS and tyrosine kinase receptor EGFR.

Clin Transl Med

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.

Background: Vitamin K-dependent γ-glutamic acid carboxylation (Gla) proteins are calcium-binding and membrane-associated, participating in coagulation, bone turnover, and cancer biology. The molecular function of transmembrane proline-rich Gla proteins (PRRGs) remains unexplored.

Methods: Analysis of pancreatic ductal adenocarcinoma (PDAC) datasets, including transcription profiles, clinical data, and tissue microarrays, was conducted to evaluate PRRG1 expression and its clinical relevance.

View Article and Find Full Text PDF

Vitamin K is essential to produce functional vitamin K-dependent coagulation factors (prothrombin, factors VII, IX, and X). Vitamin K antagonists inhibit the normal activation of these factors, leading to bleeding manifestations of variable severity. Long-acting vitamin K antagonists or superwarfarins were developed as rodenticides and have a significantly longer half-life and greater potency when compared to warfarin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!