Severe ocular abnormalities in C57BL/6 but not in 129/Sv p53-deficient mice.

Invest Ophthalmol Vis Sci

The Jackson Laboratory, Bar Harbor, Maine 04609, USA.

Published: July 1999

Purpose: To demonstrate the importance of genetic background interaction on the development of ocular phenotypes in p53-deficient mice.

Methods: Eyes of adult mice, homozygous and heterozygous for the p53 gene disruption in the 129/SvJ and C57BL/6J (B6) genetic backgrounds, and their F1 progeny were examined by indirect ophthalmoscopy and by light microscopy.

Results: Indirect ophthalmoscopy revealed unilateral or bilateral vitreal opacities, fibrous retrolental tissue, and retinal folds in adult B6 mice but not in 129/Sv mice homozygous for a p53 null mutation. In B6 p53-/- mice, blood vessels extended from the peripapillary inner retina through the posterior vitreous and into the retrolental membrane. Optic nerves were hypoplastic.

Conclusions: These findings indicate that alleles from the B6 background contribute to the aberrant ocular phenotypes observed in p53 deficiency. They also suggest that p53 or the pathway in which it functions may be important for normal eye development.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ocular phenotypes
8
adult mice
8
mice homozygous
8
indirect ophthalmoscopy
8
mice
5
severe ocular
4
ocular abnormalities
4
abnormalities c57bl/6
4
c57bl/6 129/sv
4
129/sv p53-deficient
4

Similar Publications

A smart tool for non expert clinicians for the dissemination of the MDS criteria for progressive supranuclear palsy.

Neurol Sci

January 2025

Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.

Due to the variety of clinical phenotypes and the massive clinical overlap with other neurodegenerative diseases, the diagnosis of Progressive Supranuclear Palsy (PSP) remains a major challenge. Notwithstanding, early and reliable clinical diagnosis of PSP is highly warranted for estimation of prognosis, appropriate allocation to therapeutic trials and development of new diagnostic tools. As reliable biomarkers are lacking, PSP diagnosis relies on the application of the clinical criteria promoted by the International Parkinson and Movement Disorder Society (MDS).

View Article and Find Full Text PDF

Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization.

Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures.

View Article and Find Full Text PDF

Objective: To determine the types of genetic variants in six Chinese pedigrees affected with Marfan syndrome (MFS) and analyze their clinical characteristics and molecular pathogenesis.

Methods: Six MFS pedigrees presented at the Taizhou Enze Medical Center (Group) between 2017 and 2022 were selected as the study subjects. Clinical data of pedigrees were retrospectively analyzed.

View Article and Find Full Text PDF

Cole-Carpenter syndrome (CCS) is a rare autosomal-dominant genetic disease characterized by craniosynostosis, ocular proptosis, hydrocephalus, distinctive facial features, and bone fragility. Previous cases of CCS are associated with genetic variations in P4HB, which encodes the protein disulfide isomerase (PDI), a key enzyme in protein folding. Patients with CCS caused by P4HB mutations often present with short stature, limb deformities, and abnormal epiphyseal plates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!