Urocortin, a novel 40 amino acid neuropeptide, is a member of the corticotropin-releasing factor family. With 45% homology to corticotropin-releasing factor, urocortin binds with similar affinity to the corticotropin-releasing factor- and corticotropin-releasing factor-2 receptors and may play a role in modulating many of the same systems as corticotropin-releasing factor. To assess whether urocortin and corticotropin-releasing factor are localized in the same regions of the brain, we compared the distribution of urocortin- and corticotropin-releasing factor-like immunoreactivities in the rat central nervous system. Polyclonal antibodies to rat corticotropin-releasing factor and rat urocortin were generated and utilized to map the distribution of corticotropin-releasing factor- and urocortin-like immunoreactivities throughout the rat forebrain and brainstem. Characterization of the antibodies by radioimmunoassay showed no cross-reactivity with related peptides. Male Sprague-Dawley rats were treated with colchicine for 18-24 h. Following colchicine treatment, the rats were perfused with paraformaldehyde-lysine-periodate fixative and their brains removed. Serial coronal sections were taken throughout the rat brain and processed for either corticotropin-releasing factor- or urocortin-like immunoreactivity. Urocortin-like immunoreactivity shows a discrete localization within several regions including the supraoptic nucleus, the median eminence, Edinger-Westphal nucleus and the sphenoid nucleus. This is in contrast to the more abundant corticotropin-releasing factor-like immunoreactivity. Regions containing high levels of corticotropin-releasing factor immunoreactivity include the lateral septum, paraventricular nucleus of the hypothalamus, median eminence and locus coeruleus. There are a few regions that contain both urocortin-immunoreactive and corticotropin-releasing factor-immunoreactive cells, such as the supraoptic nucleus and the hippocampus. Therefore, urocortin and corticotropin-releasing factor appear to have different distribution patterns which may be indicative of their respective physiological functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(98)00732-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!