Symptomatic atrioventricular dual pathway double responses: a role for slow pathway ablation.

Pacing Clin Electrophysiol

Electrophysiology Laboratory, Westchester County Medical Center, New York Medical College, Valhalla 10495, USA.

Published: June 1999

Two patients with symptomatic fast/slow pathway double responses were evaluated with electrophysiology studies. Chronic palpitations were resistant or worsened by medical therapy. No reentry tachycardias were induced. A nonreentrant paroxysmal supraventricular tachycardia was documented. Radiofrequency ablation of the slow pathway was safely and successfully performed. Patients remain asymptomatic for 16-18 months. Ablation of the slow pathway for this substrate is a viable option.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1540-8159.1999.tb06824.xDOI Listing

Publication Analysis

Top Keywords

slow pathway
12
pathway double
8
double responses
8
ablation slow
8
pathway
5
symptomatic atrioventricular
4
atrioventricular dual
4
dual pathway
4
responses role
4
role slow
4

Similar Publications

Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions.

Lab Chip

January 2025

Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.

A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.

View Article and Find Full Text PDF

Laboratory evolution in enables rapid catabolism of a model lignin-derived aromatic dimer.

Appl Environ Microbiol

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated.

View Article and Find Full Text PDF

Introduction: Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM.

Methods: A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile.

View Article and Find Full Text PDF

Gradient Design with Low-tortuosity Overcoming Kinetic Limitations in High-Loading Solid-State Cathodes.

Angew Chem Int Ed Engl

January 2025

UT Austin: The University of Texas at Austin, Materials Science and Engineering, 1 University Station C2200, 78712, Austin, UNITED STATES OF AMERICA.

The extensive commercialization of practical solid-state batteries (SSBs) necessitates the development of high-loading solid-state cathodes with fast charging capability. However, electrochemical kinetics are severely delayed in thick cathodes due to tortuous ion transport pathways and slow solid-solid ion diffusion, which limit the achievable capacity of SSBs at high current densities. In this work, we propose a conductivity gradient cathode with low-tortuosity to enable facile ion transport and counterbalance ion concentration gradient, thereby overcoming the kinetic limitations and achieving fast charging capabilities in thick cathodes.

View Article and Find Full Text PDF

Advances in Research on Marine Natural Products for Modulating the Inflammatory Microenvironment.

Phytother Res

January 2025

International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.

In recent years, marine natural products (MNPs) have emerged as crucial sources of lead compounds for the advancement of anti-inflammatory drugs due to their abundant diversity, complexity, and distinctiveness. Inflammatory microenvironments (IMEs) are pervasive pathological features in the etiology of various chronic diseases, referring to the localized milieu or ecosystem where inflammatory responses occur, and they play a pivotal role in the onset and progression of inflammatory diseases. Uncontrolled IMEs can lead to dysregulation of inflammatory mediators within signaling pathways, thereby exerting detrimental effects on human health and even contributing to the development of inflammatory diseases such as cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!