The neuroprotective effect of the novel AMPA receptor antagonist PD152247 (PNQX) in temporary focal ischemia in the rat.

Stroke

Departments of Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI, USA.

Published: July 1999

Background And Purpose: Evidence suggests that glutamate contributes to ischemic brain damage through activation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor. We tested the novel, selective AMPA receptor antagonist PD152247 (PNQX) in a model of temporary focal ischemia to determine the dose-response relationship and to investigate the contribution of drug-induced hypothermia to the neuroprotective action of AMPA receptor antagonists.

Methods: Temporary focal cerebral ischemia was induced in Sprague-Dawley rats by occluding the middle cerebral artery and both carotid arteries for 3 hours. Body temperature was monitored by telemetry. PNQX was administered intraperitoneally or by intravenous infusion with various doses for 6 hours. Lesion volume was determined after 3 days by stereological methods.

Results: PNQX reduced the lesion volume by 51% after intraperitoneal administration. The intravenous dose-response study demonstrated that the lowest effective dose of PNQX was 1.0 mg/kg per hour, which corresponded to a steady state plasma level of 685 ng/mL. Neuroprotection was demonstrated at PNQX plasma concentrations that did not lower body temperature over the entire course of the experiment.

Conclusions: AMPA receptor activation plays an important role in the development of ischemic brain damage. Thus, novel AMPA receptor antagonists may be useful for the treatment of stroke in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.str.30.7.1472DOI Listing

Publication Analysis

Top Keywords

ampa receptor
24
temporary focal
12
novel ampa
8
receptor antagonist
8
antagonist pd152247
8
pd152247 pnqx
8
focal ischemia
8
ischemic brain
8
brain damage
8
body temperature
8

Similar Publications

Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections.

View Article and Find Full Text PDF

Esketamine, a newly developed antidepressant, is the subject of this research which seeks to explore its impact on depressive symptoms in neuropathic pain mice and the potential molecular mechanisms involved. Through transcriptome sequencing and bioinformatics analysis combined with in vivo studies, it was identified that esketamine markedly boosts the levels of the m6A methyltransferase METTL3 and the AMPA receptor GluA1 subunit. Esketamine activates METTL3, allowing it to bind with GluA1 mRNA, promoting m6A modification, thereby enhancing GluA1 expression at synapses.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.

View Article and Find Full Text PDF

Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.

View Article and Find Full Text PDF

Repeated administration of a subanesthetic dose of ketamine results in impaired motor and cognitive behavior and differential expression of hippocampal P2X1 and P2X7 receptors in adult mice.

Behav Brain Res

January 2025

Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico. Electronic address:

Ketamine hydrochloride serves multiple purposes, including its use as a general anesthetic, treatment for depression, and recreational drug. In studies involving rodents, ketamine is utilized as a model for schizophrenia. However, it is unclear whether age affects the behavioral response induced by repeated ketamine administration and if it modifies the expression levels of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and purinergic receptors (P2X1, P2X4, P2X7).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!