We obtained nine bacterial isolates from root or collar nodules of the non-stem-nodulated Aeschynomene species A. elaphroxylon, A. uniflora, or A. schimperi and 69 root or stem nodule isolates from the stem-nodulated Aeschynomene species A. afraspera, A. ciliata, A. indica, A. nilotica, A. sensitiva, and A. tambacoundensis from various places in Senegal. These isolates, together with 45 previous isolates from various Aeschynomene species, were studied for host-specific nodulation within the genus Aeschynomene, also revisiting cross-inoculation groups described previously by D. Alazard (Appl. Environ. Microbiol. 50:732-734, 1985). The whole collection of Aeschynomene nodule isolates was screened for synthesis of photosynthetic pigments by spectrometry, high-pressure liquid chromatography, and thin-layer chromatography analyses. The presence of puf genes in photosynthetic Aeschynomene isolates was evidenced both by Southern hybridization with a Rhodobacter capsulatus photosynthetic gene probe and by DNA amplification with primers defined from photosynthetic genes. In addition, amplified 16S ribosomal DNA restriction analysis was performed on 45 Aeschynomene isolates, including strain BTAi1, and 19 reference strains from Bradyrhizobium japonicum, Bradyrhizobium elkanii, and other Bradyrhizobium sp. strains of uncertain taxonomic positions. The 16S rRNA gene sequence of the photosynthetic strain ORS278 (LMG 12187) was determined and compared to sequences from databases. Our main conclusion is that photosynthetic Aeschynomene nodule isolates share the ability to nodulate particular stem-nodulated species and form a separate subbranch on the Bradyrhizobium rRNA lineage, distinct from B. japonicum and B. elkanii.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC91460 | PMC |
http://dx.doi.org/10.1128/AEM.65.7.3084-3094.1999 | DOI Listing |
Heliyon
October 2024
Université Nazi Boni, Institut du Développement Rural, BP 1091 Bobo-Dioulasso, Burkina Faso.
Seed production of a forage legume in the natural pastures reflects its ability to reseed and enrich the pasture. This study aimed at improving the productivity and nutritional value of pastures through enhancement the ability of leguminous species to restore pastures under phosphorus management. A field study was conducted at the research station of Farako-Bâ, Burkina Faso.
View Article and Find Full Text PDFNew Phytol
December 2024
IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro Montpellier/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet, 34398, Montpellier Cedex 5, France.
Some Bradyrhizobium strains nodulate certain Aeschynomene species independently of Nod factors, but thanks to their type III secretion system (T3SS). While different T3 effectors triggering nodulation (ErnA and Sup3) have been identified, the plant signalling pathways they activate remain unknown. Here, we explored the intraspecies variability in T3SS-triggered nodulation within Aeschynomene evenia and investigated transcriptomic responses that occur during this symbiosis.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
April 2024
Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, K1A 0C6, Canada.
A novel bacterial symbiont, strain A19, was previously isolated from a root-nodule of Aeschynomene indica and assigned to a new lineage in the photosynthetic clade of the genus Bradyrhizobium. Here data are presented for the detailed genomic and taxonomic analyses of novel strain A19. Emphasis is placed on the analysis of genes of practical or ecological significance (photosynthesis, nitrous oxide reductase and nitrogen fixation genes).
View Article and Find Full Text PDFPLoS One
April 2024
IRD (French National Research Institute for Sustainable Development), UMR PHIM (Plant Health Institute of Montpellier), Montpellier, France.
Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A.
View Article and Find Full Text PDFBMC Genomics
March 2024
Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China.
Background: Indian jointvetch (Aeschynomene indica) is a common and pernicious weed found in the upland direct-seeding rice fields in the lower reaches of the Yangtze River in China. However, there are few reports on the degree of harm, genetic characteristics, and management methods of this weed. The purpose of this study is to clarify the harm of Indian jointvetch to upland direct-seeding rice, analyze the genetic characteristics of this weed based on chloroplast genomics and identify its related species, and screen herbicides that are effective in managing this weed in upland direct-seeding rice fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!