To investigate internal movements in Tet repressor (TetR) during induction by tetracycline (tc) we determined the interspin distances between pairs of nitroxide spin labels attached to specific sites by electron paramagnetic resonance (EPR) spectroscopy. For this purpose, we constructed six TetR variants with engineered cysteine pairs located in regions with presumed conformational changes. These are I22C and N47C in the DNA reading head, T152C/Q175C, A161C/Q175C and R128C/D180C near the tc-binding pocket, and T202C in the dimerization surface. All TetR mutants show wild-type activities in vivo and in vitro. The binding of tc results in a considerable decrease of the distance between the nitroxide groups attached to both I22C residues in the TetR dimer and an increase of the distance between the N47C residues. These opposite effects are consistent with a twisting motion of the DNA reading heads. Changes of the spin-spin interactions between nitroxide groups attached to residues near the tc-binding pocket demonstrate that the C-terminal end of alpha-helix 9 moves away from the protein core upon DNA binding. Alterations of the dipolar interaction between nitroxide groups at T202C indicate different conformations for tc and DNA-bound repressor also in the dimerization area. These results are used to model structural changes of TetR upon induction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.1999.2875 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!