We have designed two original sets of oligonucleotide primers hybridizing the relatively conserved motifs within the immunoglobulin signal sequences of each of the 15 heavy chain and 18 kappa light chain gene families. Comparison of these 5' primers with the immunoglobulin signal sequences referenced in the Kabat database suggests that these oligonucleotide primers should hybridize with 89.4% of the 428 mouse heavy chain signal sequences and with 91.8% of the 320 kappa light chain signal sequences with no mismatch. Following PCR amplification using the designed primers and direct sequencing of the amplified products, we obtained full-length variable sequences belonging to major (V(H)1, V(H)2, V(H)3, Vkappa1 and Vkappa21) but also small-sized (V(H)9, V(H)14, Vkappa2, Vkappa9A/9B, Vkappa12/13, Vkappa23 and Vkappa33/34) gene families, from nine murine monoclonal antibodies. This strategy could be a powerful tool for antibody sequence assessment whatever the V gene family before humanization of mouse monoclonal antibody or identification of paratope-derived peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(99)00649-3DOI Listing

Publication Analysis

Top Keywords

signal sequences
16
direct sequencing
8
gene family
8
oligonucleotide primers
8
immunoglobulin signal
8
heavy chain
8
kappa light
8
light chain
8
gene families
8
chain signal
8

Similar Publications

This paper proposes a covert chaotic encryption (CCE) scheme based on compressive sensing (CS). The chaotic sequences used are generated by a six-dimensional hyper-chaotic D-system, where the sequence is utilized for a chaotic index sparse block (CISB), the sequence is used for generating the CS measurement matrix effectively, the , , and sequences are employed for variable-parameter iterative Arnold transformations, and the sequence is used for dual-random least significant bit (LSB) scrambling and embedding. The combination of these technologies enabled the scheme to achieve multi-domain, multi-dimensional, ultra-high-security encryption for multimedia image data.

View Article and Find Full Text PDF

Expression profiles of NOD1 and NOD2 and pathological changes in gills during Flavobacterium columnare infection in yellow catfish, Tachysurus fulvidraco.

J Fish Biol

January 2025

Key Laboratory of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.

NOD-like receptors are significant contributors to the immune response of fish against different types of pathogen invasion. NOD1 and NOD2 genes of yellow catfish (Tachysurus fulvidraco) were identified and characterized in this study. Yellow catfish NOD1 and NOD2 have open reading frames (ORFs) of 2841 and 2949 bp, encoding 946 and 982 amino acids, respectively.

View Article and Find Full Text PDF

Antibodies, essential components of adaptive immunity, derive their remarkable diversity primarily from V(D)J gene rearrangements, particularly within the heavy chain complementarity-determining region 3 (CDR-H3) where D genes play a major role. Traditionally, D genes were thought to recombine only in the forward direction, despite having identical recombination signal sequences (12 base pair spacers) at both ends. This observation led us to question whether these symmetrical sequences might enable bidirectional recombination.

View Article and Find Full Text PDF

Aim: The aim of the study was to evaluate and compare contrast-to-noise ratios (CNRs) and signal-to-noise ratios (SNRs) of pre- and postcontrast T1 maps, T2 maps, early and late gadolinium images in terms of visual assessment of cardiac thrombus, to see if maps can replace contrast-enhanced images for detection of cardiac thrombus.

Materials And Methods: T1, T2 maps, and postcontrast images of 22 patients with cardiac thrombus were retrospectively evaluated for SNR and CNR. SNR and CNR values of thrombus, blood pool, and myocardium measured at maps and contrast-enhanced images were compared with each other.

View Article and Find Full Text PDF

The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!