The final destination of glycosylphosphatidylinositol (GPI)-attached proteins in Saccharomyces cerevisiae is the plasma membrane or the cell wall. Two kinds of signals have been proposed for their cellular localization: (i) the specific amino acid residues V, I, or L at the site 4 or 5 amino acids upstream of the GPI attachment site (the omega site) and Y or N at the site 2 amino acids upstream of the omega site for cell wall localization and (ii) dibasic residues in the region upstream of the omega site (the omega-minus region) for plasma membrane localization. The relationships between these amino acid residues and efficiencies of cell wall incorporation were examined by constructing fusion reporter proteins from open reading frames encoding putative GPI-attached proteins. The levels of incorporation were high in the constructs containing the specific amino acid residues and quite low in those containing two basic amino acid residues in the omega-minus region. With constructs that contained neither specific residues nor two basic residues, levels of incorporation were moderate. These correlations clearly suggest that GPI-attached proteins have two different signals which act positively or negatively in cell wall incorporation for their cellular localization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93875 | PMC |
http://dx.doi.org/10.1128/JB.181.13.3886-3889.1999 | DOI Listing |
Annu Rev Immunol
January 2025
3Department of Environmental Medicine and Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA; email:
Initially discovered for its role mediating the deleterious effects of environmental contaminants, the aryl hydrocarbon receptor (AHR) is now known to be a crucial regulator of the immune system. The expanding list of AHR ligands includes synthetic and naturally derived molecules spanning pollutants, phytochemicals, pharmaceuticals, and substances derived from amino acids and microorganisms. The consequences of engaging AHR vary, depending on factors such as the AHR ligand, cell type, immune challenge, developmental state, dose, and timing of exposure relative to the immune stimulus.
View Article and Find Full Text PDFNeurology
February 2025
Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
Pathogenic variants in cause congenital muscular dystrophy through hypoglycosylation of alpha-dystroglycan (OMIM #615350). The established phenotypic spectrum of GMPPB-related disorders includes recurrent rhabdomyolysis, limb-girdle muscular dystrophy, neuromuscular transmission abnormalities, and congenital muscular dystrophy with variable brain and eye anomalies. We report a 9-month-old male infant with congenital muscular dystrophy, infantile spasms, and compound heterozygous pathogenic variants (c.
View Article and Find Full Text PDFBlood Adv
January 2025
Sanquin, Amsterdam, Netherlands.
In Immune-mediated Thrombotic Thrombocytopenic Purpura (iTTP), patients develop antibodies against ADAMTS13. The majority of patients exhibit inhibitory anti-spacer antibodies. Non-inhibitory antibodies binding to the carboxy-terminal CUB domains have been suggested to enhance the clearance of ADAMTS13 in iTTP.
View Article and Find Full Text PDFBraz J Biol
January 2025
Universidade Federal de Santa Maria - UFSM, Departamento de Defesa Fitossanitária, Santa Maria, RS, Brasil.
Annual ryegrass (Lolium multiflorum Lam.) is one of the main weeds in subtropical cropping systems of Europe, Oceania and South America. Therefore, the hypothesis of this work is that the interaction between ammonium glufosinate and saflufenacil can be synergistic for ryegrass control.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Optical resolution photoacoustic imaging of uneven samples without z-scanning is transformative for the fast analysis and diagnosis of diseases. However, current approaches to elongate the depth of field (DOF) typically imply cumbersome postprocessing procedures, bulky optical element ensembles, or substantial excitation beam side lobes. Metasurface technology allows for the phase modulation of light and the miniaturization of imaging systems to wavelength-size thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!