Connexin32 (Cx32) is the major gap junctional protein in mouse liver. We have shown recently that the formation of liver tumours in Cx32-deficient mice is strongly increased in comparison with control wild-type mice, demonstrating that the deficiency in gap junctional communication has an enhancing effect on hepatocarcinogenesis. We have now compared the effect of Cx32 deficiency on liver carcinogenesis in two strains of mice with differing susceptibility to hepatocarcinogenesis. Heterozygous Cx32(+/-) females were crossed with male Cx32 wild-type C57BL/6J (low susceptibility) or C3H/He (high susceptibility) mice. Since the Cx32 gene is located on the X-chromosome, the resulting F1 males segregated to the genotypes Cx32(Y/+) and Cx32(Y/-). Genotyping was performed by PCR-analysis using tail-tip DNA. Weanling male mice were i.p. injected with a single dose of N-nitrosodiethylamine and were killed 16, 21 or 26 weeks later. The number, volume fraction and size distribution of precancerous liver lesions characterized by a deficiency in the marker enzyme glucose-6-phosphatase were quantitated. The results demonstrate that Cx32 deficiency only slightly affects the number of enzyme-altered lesions, but strongly enhances their growth, both in the resistant and the susceptible mouse strain, suggesting that decreased intercellular communication results in tumour promoting activity irrespective of the genetic background of the mouse strain used. Since Cx32-deficient C3H/He hybrids were approximately 5-10 times more sensitive than C3H/He hybrids with an intact Cx32 gene, this mouse strain may prove very useful for toxicological screening purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/20.7.1379 | DOI Listing |
Cell Biochem Funct
January 2025
Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India.
The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).
View Article and Find Full Text PDFComp Med
December 2024
1Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York.
Chlamydia muridarum (Cm) has reemerged as a moderately prevalent infectious agent in research mouse colonies. Despite its experimental use, few studies evaluate Cm's effects on immunocompetent mice following its natural route of infection. A Cm field isolate was administered (orogastric gavage) to 8-wk-old female BALB/cJ (C) mice.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.
An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5).
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
Background/objectives: COVID-19 vaccines effectively prevent severe disease, but unequal distribution, especially in low- and middle-income countries, has led to vaccine-resistant strains. This highlights the urgent need for alternative vaccine platforms that are safe, thermostable, and easy to distribute. This study evaluates the immunogenicity, stability, and scalability of a dissolved microneedle array patch (MAP) delivering the rS1RS09 subunit vaccine, comprising the SARS-CoV-2 S1 monomer and RS09, a TLR-4 agonist peptide.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
Background: Polypeptide vaccines have the potential to improve immune responses by targeting conserved and weakly immunogenic regions in antigens. This study aimed to identify and evaluate the efficacy of a novel influenza universal vaccine candidate consisting of multiple polypeptides derived from highly conserved regions of influenza virus proteins hemagglutinin (HA), neuraminidase (NA), and matrix protein 2 (M2).
Methods: Immunoinformatics tools were used to screen conserved epitopes from different influenza virus subtypes (H1N1, H3N2, H5N1, H7N9, H9N2, and IBV).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!