Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We introduce a novel experimental strategy for DNA mutation detection named the Mismatch Identification DNA Analysis System (MIDAS) [1, 2], which has an associated isothermal probe amplification step to increase target DNA detection sensitivity to attomole levels. MIDAS exploits DNA glycosylases to remove the sugar moiety on one strand (the probe strand) at a DNA base pair mismatch. The resulting apyrimidinic/ apurinic (AP) site is cleaved by AP endonucleases/lyases either associated with the DNA glycosylase or externally added to the reaction mixture. MIDAS utilizes 32p- or FITC-labeled oligonucleotides as mutation probes. Generally between 20-50 nucleotides in length, the probe hybridizes to the target sequence at the reaction temperature. Mismatch repair enzymes (MREs) then cut the probe at the point of mismatch. Once the probe is cleaved, the fragments become thermally unstable and fall off the target, thereby allowing another full-length probe to hybridize. This oscillating process amplifies the signal (cleaved probe). Cleavage products can be detected by electrophoretic separation followed by autoradiography, or by laser-induced fluorescence-capillary electrophoresis (LIF-CE) of fluorophore-labeled probes in two minutes using a novel CE matrix. In the present experiments, we employed the mesophilic Escherichia coli enzyme deoxyinosine 3'-endonuclease (Endo V), and a novel thermostable T/G DNA glycosylase, TDG mismatch repair enzyme (TDG-MRE). MIDAS differentiated between a clinical sample BRCA 1 wild-type sequence and a BRCA1 185delAG mutation without the need for polymerase chain reaction (PCR). The combination of MIDAS with LIF-CE should make detection of known point mutations, deletions, and insertions a rapid and cost-effective technique well suited for automation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1522-2683(19990101)20:6<1141::AID-ELPS1141>3.0.CO;2-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!