AI Article Synopsis

Article Abstract

Short latency vestibular evoked potentials (VsEPs) to linear acceleration impulses (L-VsEPs) are initiated in the otolith organs (saccule and utricle). Some of the saccule afferents have been reported to respond not only to linear acceleration, but also to high intensity acoustic stimuli. If so, the L-VsEP recorded from the saccule (elicited with the stimulus orientated relative to the head so as to optimally activate the saccule, i.e. stimulus in the vertical plane, Z-VsEP) should be reduced during high intensity broad band noise (BBN) "masking". Conversely, the utricular afferents have been reported to be less auditory-sensitive. Therefore, an L-VsEP which is mainly utricular in origin (stimulus in the horizontal plane, X-VsEP) should be less affected by this noise "masking". This was investigated in rats by recording X-VsEPs and Z-VsEPs and angular VsEPs (A-VsEPs), originating in the lateral semi-circular canals, before, during and after exposure to short duration, high intensity (113 dB SPL) BBN. This intensity completely masked auditory nerve evoked responses. The Z-VsEP did appear to be slightly more affected by the noise "masking" than the X-VsEP, implying the presence of more auditory-sensitive elements in the saccule. The A-VsEP was also affected by the BBN. The overall effect was relatively small (on average, 10-25% depression of the first wave of the different VsEPs). The responses showed recovery 5 min later.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00016489950181305DOI Listing

Publication Analysis

Top Keywords

noise "masking"
12
high intensity
12
vestibular evoked
8
evoked potentials
8
linear acceleration
8
afferents reported
8
saccule
5
white noise
4
"masking"
4
"masking" vestibular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!