In contrast to the well-established dopaminergic innervation of the neostriatum, the existence of dopaminergic innervation of the subthalamic nucleus and globus pallidus is controversial. In the present study, tyrosine hydroxylase (TH)-immunoreactive elements were observed by light microscopy after antigen retrieval in the subthalamic nucleus and in the internal and external segments of the globus pallidus in postmortem human brain. Small islands of apparent neostriatal tissue with abundant arborization of fine, TH-immunoreactive axons in the vicinity of calbindin-positive small neurons resembling neostriatal medium spiny neurons were present in the external segment of the globus pallidus. Large numbers of medium-large, TH-immunoreactive axons were observed passing above and through the subthalamic nucleus and through both pallidal segments; these are presumed to be axons of passage on their way to the neostriatum. In addition, fine, TH-immunoreactive axons with meandering courses, occasional branches, and irregular outlines, morphologically suggestive of terminal axon arborizations with varicosities, were seen in both pallidal segments, including the ventral pallidum, and the subthalamic nucleus, consistent with a catecholaminergic (probably dopaminergic) innervation of these nuclei. This finding suggests that, in Parkinson's disease and in animal models of this disorder, loss of dopaminergic innervation might contribute to abnormal neuronal activation in these three nuclei.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1096-9861(19990705)409:3<400::aid-cne5>3.0.co;2-4DOI Listing

Publication Analysis

Top Keywords

subthalamic nucleus
20
globus pallidus
16
dopaminergic innervation
16
th-immunoreactive axons
12
fine th-immunoreactive
8
pallidal segments
8
subthalamic
5
nucleus
5
tyrosine hydroxylase-immunoreactive
4
hydroxylase-immunoreactive elements
4

Similar Publications

Objective: The aim of this study was to evaluate outcomes of deep brain stimulation (DBS) for Meige syndrome, compare the efficacy of globus pallidus internus (GPi) and subthalamic nucleus (STN) as targets, and identify potential outcome predictors.

Methods: The PubMed, Embase, and Web of Science databases were systematically searched to collect individual data from patients with Meige syndrome receiving DBS. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) scores.

View Article and Find Full Text PDF

Basal ganglia components have distinct computational roles in decision-making dynamics under conflict and uncertainty.

PLoS Biol

January 2025

Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.

The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands.

View Article and Find Full Text PDF

Matched-controlled long-term disease evaluation and neuropsychological outcomes derived from deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson´s disease (PD) are lacking, with inconsistent results regarding the cognitive impact of this procedure. Here we study the long-term effects associated to DBS comparing outcomes with a matched control group. A prospective observational study of 40 patients with PD with bilateral STN-DBS, with a mean follow-up of 9 (6-12) years was conducted.

View Article and Find Full Text PDF

Progressive supranuclear palsy: an updated approach on diagnosis, treatment, risk factors and outlook in Mexico.

Gac Med Mex

January 2025

Laboratorio de Reprogramación Celular y Enfermedades Crónico-Degenerativas, Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Progressive supranuclear palsy (PSP) is a rare, atypical parkinsonism, characterized by the presence of intracerebral tau protein aggregates and determined by a wide spectrum of clinical features. The definitive diagnosis is postmortem and is identified through the presence of neuronal death, gliosis, and aggregates of the tau protein presented in the form of neurofibrillary tangles (MNF) with a globose appearance in regions such as the subthalamic nucleus, the substantia nigra, and the globus pallidus The findings in ancillary imaging studies, as well as fluids biomarkers, are not sufficient to support diagnosis of PSP but are used to rule out similar pathologies because there are still no specific or validated biomarkers for this disease. The current treatment of PSP is focused on reducing symptoms, although emerging therapies seek to counteract its pathophysiological mechanisms.

View Article and Find Full Text PDF

In this study, we analyzed the spatio-temporal pattern of expression of specific transcription factors (PITX2, FOXA1, BARHL1, FOXP1, FOXP2) in the human fetal subthalamic nucleus and its neighboring structures from 11 postconceptional weeks (PCW) to 3 postnatal months. We found that all analyzed transcription factors are expressed already during the early fetal period (at 11 PCW). Both FOXP1- and FOXP2-immunoreactive cells were found in the subthalamic nucleus as well as in the striatum, thalamus, reticular nucleus, but not in the zona incerta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!