Several N-N-and N-O-containing compounds were analysed for their ability to act as substrates for horseradish peroxidase and peroxidases in Mycobacterium tuberculosis extracts. Aminoguanidine, diaminoguanidine, isoniazid, hydroxylamine and hydrazine were found to be weak substrates for horseradish peroxidase in reaction I and to inhibit the reaction of horseradish peroxidase with hydrogen peroxide. The same compounds inhibited the reaction of Mycobacterium tuberculosis peroxidase-catalase with hydrogen peroxide, and hydroxylamine was found to be a weak substrate for this enzyme. In growth inhibition experiments, diaminoguanidine inhibited the growth of M. tuberculosis H37Rv at 50 microg/mL, but not the growth of two isoniazid-resistant strains. Isonicotinic acid hydroxamate inhibited the reaction of the peroxidases with hydrogen peroxide, but was not itself a substrate and had no growth-inhibitory effects. On the basis of these results we suggest that the effect of isoniazid on growth of M. tuberculosis results from increased oxidative stress due to inhibition of catalase-peroxidase as well as from generation of toxic radicals with the structure [structure in text].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1699-0463.1999.tb01593.x | DOI Listing |
Analyst
January 2025
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
The M13 phage carries approximately 5 copies of the pIII protein, each of which is capable of displaying a single-chain variable fragment (scFv) that targets a specific antigen. This feature enables the M13 phage to be widely employed in the construction of scFv libraries, thereby facilitating the identification of antibodies with high specificity and affinity for target antigens. In this study, mice were immunized three times with (strain C50041) to induce diverse antibodies.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Accurate, specific, and cost-effective detection of toxic cyanogenic glycosides is crucial for ensuring biological health and food safety. In this study, a novel biosensor based on co-immobilized multi-enzyme system was constructed by artificial antibody-antigen-directed immobilization for the colorimetric detection of amygdalin through a cascade reaction catalyzed by β-glucosidase, glucose oxidase, and horseradish peroxidase. Artificial antibodies and antigens were prepared using catechol and 3,4-dihydroxybenzaldehyde, respectively, to generate mutual affinity recognition ability for enzyme immobilization.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
HRP, or horseradish peroxidase, is a reporter enzyme with extensive use in biotechnological applications. We previously reported the purification and characterization of two anionic peroxidases from L. var (black radish) roots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!