The relevance of p53 mutations to the neoplastic malignant transformation of rodent fibroblasts by genotoxic physical and chemical agents is not clear. In the present study, we investigated p53 mutations (in exons 5-8) in non-transformed and neoplastically transformed C3H 10T1/2 and severe combined immunodeficiency (SCID) cells. No p53 mutations were detected in 15 neoplastically transformed (two spontaneous, one 3-methylcholanthrene-induced, seven gamma-ray-induced and five 'hot particle'-induced) and two non-transformed 10T1/2 cells. Wild-type p53 gene was also detected in all non-transformed (immortalized) SCID cell lines analyzed (four lines) whereas all three neoplastically transformed (two spontaneous, one gamma-ray-induced) cell lines displayed missense mutations in the p53 gene. These mutations were all transitions: A > G in codon 123, G > A in codon 152, and C > T in codon 238. We conclude that mutation in the p53 gene appears to be an infrequent event in 10T1/2 cells regardless of the transforming agent, but a frequent event in the neoplastic transformation of immortalized SCID cells. Non-transformed SCID cells are deficient in repair of DNA double-strand breaks, and neoplastically transformed cells are assumed to be deficient as well.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0921-8777(99)00018-xDOI Listing

Publication Analysis

Top Keywords

p53 gene
16
neoplastically transformed
16
p53 mutations
12
scid cells
12
gene mutations
8
mutations neoplastic
8
neoplastic transformation
8
c3h 10t1/2
8
10t1/2 severe
8
severe combined
8

Similar Publications

Transcriptome analysis unveils the mechanisms of oxidative stress, immunotoxicity and neurotoxicity induced by benzotriazole UV stabilizer-328 in zebrafish embryos.

Ecotoxicol Environ Saf

January 2025

University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

As an emerging pollutant, ultraviolet stabilizer-328 (UV-328) has been frequently detected in aquatic environments and attracted great attention. Nevertheless, the toxicity and mechanisms of UV-328 to aquatic organisms are still not fully understood. In particular, the immunotoxicity and neurotoxicity of UV-328 to aquatic organisms and their mechanisms have not been reported yet.

View Article and Find Full Text PDF

Background: Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential.

View Article and Find Full Text PDF

Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-sensitive polymers are extensively used in cancer therapies. However, the ROS levels in the tumor microenvironment are often insufficient to trigger an adequate therapeutic response. Herein, we report a cinnamaldehyde ()-based ROS-responsive cationic polymer () and demonstrate its high efficiency in gene delivery and tumor cell growth inhibition.

View Article and Find Full Text PDF

Background: Aggressive Variant Prostate Cancers (AVPCs) are incurable malignancies. Platinum-based chemotherapies are used for the palliative treatment of AVPC. The Polycomb Repressive Complex 2 (PRC2) promotes prostate cancer progression histone H3 Lysine 27 tri-methylation (H3K27me3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!