Whole-cell patch clamp recordings in combination with direct control and measurements of O2 tension (pO2) in bath solution were used to determine the sensitivity of Ca2+ channels of cultured hippocampal neurones to hypoxia in glucose free solution. In all tested neurones, a lowering of pO2 to 4/50 mmHg did not induce changes either in magnitude, kinetics or voltage-current relations of total Ca2+ currents, which composed mainly from two types, L-type (64%) and N-type (31%) components. Hypoxia only induced a delay of Ca2+ current run-down about 27.5% and 39% at 50 and 4 mmHg pO2 respectively that presumably depended on changes in cytoplasmic channel-modulatory metabolites. The obtained results demonstrate that Ca2+ channel molecules in cultured hippocampal neurones are themselves insensitive to short-lasting (10-20 min) oxygen and glucose deprivation, and that they are not a principal target for hypoxic influences on hippocampal function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(99)01575-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!