Effect of interrupted lens wear on compensation for a minus lens in tree shrews.

Optom Vis Sci

Department of Physiological Optics, School of Optometry, The University of Alabama at Birmingham, 35294-4390, USA.

Published: May 1999

Background: When a young animal wears a monocular minus (concave) lens that shifts the focal plane away from the cornea, the vitreous chamber elongates over a period of days, shifting the retinal location to compensate for the altered focal plane. We examined the effect of removing the lens for a portion of each day on the amount of compensation in tree shrews.

Methods: Starting 24 days after natural eye opening, juvenile tree shrews wore a goggle frame that held a -5 D lens in front of one eye, with an open frame around the fellow control eye. The goggle was removed for 0, 0.5, 1, 2, or 7 h each day (N = 5, 5, 5, 5, and 3 animals per group, respectively), starting 0.5 h after the start of each 14 h light-on period. After 21 days of treatment, measures were made of the cycloplegic refractive state (streak retinoscopy) and the ocular component dimensions (A-scan ultrasound). Normal animals that experienced 14 h each day with no lens (N = 3) were also examined.

Results: The treated eyes of the 0 h group developed full refractive compensation for the lens (treated eye - control eye, mean +/- SEM = -5.8+/-1.1 D) and had increased vitreous chamber depth (0.13+/-0.02 mm) and axial length (0.12+/-0.02 mm) relative to the untreated control eye. The groups in which the lens was removed for 0.5 and 1 h each day showed partial compensation for the -5 D lens, both in refractive state (-4.2+/-0.4 D; -2.9+/-1.6 D) and in vitreous chamber depth (0.12+/-0.02 mm; 0.09+/-0.02 mm). The 2, 7, and 14 h (normal) groups showed no significant refractive or axial compensation. In the 0.5 and 1 h groups, A-scan ultrasound showed a thinning of the region between the front of the retina and back of the sclera.

Conclusions: The eyes of tree shrews can tolerate altered monocular visual stimulation produced by a minus lens worn for 12 h of a 14-h light cycle without developing an induced myopia. However, when the lens is worn more than 12 of 14 h each day, compensation appears to increase linearly with decreased lens-off time. If the eyes of human children respond similarly to defocus from near work or other sources, it would seem that the defocus must be present almost all the time to induce myopia. If defocus contributes to human myopia through a compensation mechanism, then an increase in the amount of time that focused images are present should reduce myopic progression.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00006324-199905000-00019DOI Listing

Publication Analysis

Top Keywords

tree shrews
12
vitreous chamber
12
control eye
12
lens
10
minus lens
8
focal plane
8
period days
8
removed day
8
refractive state
8
a-scan ultrasound
8

Similar Publications

High-throughput markerless pose estimation and home-cage activity analysis of tree shrew using deep learning.

Animal Model Exp Med

January 2025

School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.

Background: Quantifying the rich home-cage activities of tree shrews provides a reliable basis for understanding their daily routines and building disease models. However, due to the lack of effective behavioral methods, most efforts on tree shrew behavior are limited to simple measures, resulting in the loss of much behavioral information.

Methods: To address this issue, we present a deep learning (DL) approach to achieve markerless pose estimation and recognize multiple spontaneous behaviors of tree shrews, including drinking, eating, resting, and staying in the dark house, etc.

View Article and Find Full Text PDF

Prevalence of Multiple RNA Virus Infections in Nine Types of Commonly Used Laboratory Animals in China.

Zoonoses Public Health

January 2025

Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China.

Introduction: Laboratory animals are widely used in biomedical research. Surveillance of naturally occurring virus in laboratory animals is important to fully understand the results of animal experiment, control laboratory-acquired infections among research personnel and manage viral transmission within laboratory animal populations. This study aimed to investigate the prevalence of multiple RNA viruses in laboratory animals commonly used in China.

View Article and Find Full Text PDF

Tree shrew as a new animal model for musculoskeletal disorders and aging.

Bone Res

January 2025

State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.

Intervertebral disc degeneration (IDD), osteoarthritis (OA), and osteoporosis (OP) are common musculoskeletal disorders (MSDs) with similar age-related risk factors, representing the leading causes of disability. However, successful therapeutic development and translation have been hampered by the lack of clinically-relevant animal models. In this study, we investigated the potential suitability of the tree shrew, a small mammal with a close genetic relationship to primates, as a new animal model for MSDs.

View Article and Find Full Text PDF

Methamphetamine and HIV-1 Tat Protein Synergistically Induce Endoplasmic Reticulum Stress to Promote TRIM13-Mediated Neuronal Autophagy.

Mol Neurobiol

December 2024

NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China.

Co-exposure to methamphetamine (METH) abuse and HIV infection exacerbates central nervous system damage. However, the underlying mechanisms of this process remain poorly understood. This study aims to explore the roles of neuronal autophagy in the synergistic damage to the central nervous system caused by METH and HIV proteins.

View Article and Find Full Text PDF

Human adenovirus species B knob proteins as immunogens for inducing cross-neutralizing antibody responses.

mSphere

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.

The re-emerging human adenovirus (HAdV) types 3, 7, 14, and 55 of species B have caused severe or even fatal acute respiratory disease. Therefore, the development of multivalent vaccines against HAdV types 3, 7, 14, and 55 remains an important goal. In our previous study, we identified a cross-neutralizing epitope that induced broadly reactive monoclonal neutralizing antibodies against the knob proteins of HAdV types 7, 11, 14, and 55.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!