Insect hemolymph juvenile hormone binding protein (hJHBP) regulates peripheral titers of its ligands, the juvenile hormones. In larvae of the black (bl) strain of the tobacco hornworm, Manduca sexta, treatment with small doses of juvenile hormone I (JH I) can also regulate titers of hJHBP. To further investigate this regulation, responsiveness of hJHBP mRNA expression to JH I was characterized in vivo. RNA analyzes revealed that transcript levels in fat body, the site of hJHBP synthesis, increased fivefold within several hours of treatment with physiological doses of hormone and remained elevated for approximately 16 h. Sensitivity to JH treatment was found to vary temporally. To ensure transcript identity, a wild-type cDNA clone and a bl RT-PCR fragment were sequenced and found to be 99% homologous. Together, these results suggest that JH participates in regulating expression of its transport protein in bl larvae by modifying the in vivo abundance of hJHBP's mRNA transcript.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0303-7207(98)00258-5DOI Listing

Publication Analysis

Top Keywords

juvenile hormone
12
hormone binding
8
binding protein
8
manduca sexta
8
ligand regulation
4
juvenile
4
regulation juvenile
4
hormone
4
protein mrna
4
mrna mutant
4

Similar Publications

Aquatic herbicides are commonly used to control a variety of non-native plants. One common active ingredient used in commercial herbicide formulations globally is 2,4-dichlorophenoxyacetic acid (2,4-D). Though 2,4-D is used in aquatic ecosystems, no studies have investigated cellular, biochemical, and transcriptional effects or mechanisms of 2,4-D exposure on fathead minnows (Pimephales promelas) throughout juvenile development.

View Article and Find Full Text PDF

In this study, we investigated the regulatory roles of the () gene in the reproductive process of female . Its total cDNA length was 1848 bp, encoding for 460 amino acids. It contained conserved domains typical of epoxide hydrolases, such as the Abhydrolase family domain, the EHN epoxide hydrolase superfamily domain, and the "WWG" and "HGWP" motifs.

View Article and Find Full Text PDF

Alogliptin attenuates testicular damage induced by monosodium glutamate in both juvenile and adult male rats by activating autophagy: ROS Dependent AMPK/mTOR.

Reprod Toxicol

December 2024

Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Department of Anatomy, College of Medicine, Al-Baha University, Al-Baha 65525, Saudi Arabia.

Monosodium glutamate (MSG) is one of the most commonly used food additives, known for its adverse health effects. Alogliptin (ALO) is a highly selective dipeptidyl peptidase-4 inhibitor, but its role in male reproductive function remains debated. The study was designed to evaluate and compare the potential of ALO in mitigating MSG-induced testicular toxicity in juvenile and adult male rats.

View Article and Find Full Text PDF

Introduction: The juvenile hormone (JH) and 20-hydroxyecdysone (20E) are the central regulating hormones of insect development. The timing of their secretion usually leads to developmental transitions.

Methods: The developmental transitions were evaluated via the starvation treatment and the expressions of two key metamorphosis inducing factor in .

View Article and Find Full Text PDF

Post-eclosion growth in the Drosophila ejaculatory duct is driven by Juvenile hormone signaling and is essential for male fertility.

Dev Biol

December 2024

Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA. Electronic address:

The Drosophila Ejaculatory duct (ED) is a secretory tissue of the somatic male reproductive system. The ED is involved in the secretion of seminal fluid components and ED-specific antimicrobial peptides that aid in fertility and the female post-mating response. The ED is composed of secretory epithelial cells surrounded by a layer of innervated contractile muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!