Muntjac cells were cultured at 5 X 10(5) cells/10 cm Petri dish for 24 h prior to addition of fatty acids (50 microM) which were delivered to the cells complexed with 2% bovine serum albumin (fatty acid-free) and incubated for a further 24 h. Parallel dishes were processed for lipid extraction and GC analysis. This analysis showed highly significant (P < 0.01) uptake by the cells of each fatty acid. Genotoxins (75 microM hydrogen peroxide, 20 microM t-butylhydroperoxide and 2.4 microM mitomycin C) were added to the cells for 1 h prior to the end of the 24 h fatty acid incubation period. Control (no genotoxin or fatty acid) treatments were included. No difference was observed in background frequencies of SCEs between controls and fatty acid treatments, thus indicating that these fatty acids per se do not cause DNA damage. The cells incubated with the genotoxins showed increased (P < 0.05) frequencies of SCEs when compared with control frequencies. Cells incubated with genotoxins in the presence of fatty acids also showed significantly higher (P < 0.05) levels of SCEs when compared with control frequencies. When cells supplemented with genotoxins in the presence of fatty acids were compared with cells treated with genotoxins alone, higher levels of SCEs were observed in the former, suggesting that the fatty acids exacerbate DNA damage caused by these genotoxins.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mutage/14.3.335DOI Listing

Publication Analysis

Top Keywords

fatty acids
20
fatty acid
16
frequencies sces
12
fatty
10
cells
8
acid treatments
8
dna damage
8
cells incubated
8
incubated genotoxins
8
sces compared
8

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!