Expression of the members of the Ptx family of transcription factors in human pituitary adenomas.

J Clin Endocrinol Metab

Laboratoire Interactions Cellulaires Neuroendocriniennes, Unité Mixte de Recherche 6544, Centre National de la Recherche Scientifique-Université de la Méditerrannée, Institut Fédératif Jean Roche, Faculté de Médecine Nord,

Published: June 1999

A number of putative transcription factors described in the pituitary have been implicated as key elements in the processes that direct pituitary development. Three recently described proteins, Ptx1, Ptx2, and Ptx3, define a new family of transcription factors, the Ptx subfamily, within the paired-like class of homeodomain factors. In mice, Ptx1 and Ptx2 gene expression has been detected in the area of the pituitary primordium and is maintained throughout development in Rathke pouch and adult pituitary. In the present study, the expression of the Ptx1, Ptx2, and Ptx3 genes was characterized in the normal human pituitary and in the different types of human pituitary adenomas. Although no Ptx3 gene expression could be detected in these tissues, Ptx1 presented with a quite ubiquitous pattern of distribution, being expressed at quite constant levels in normal tissues and in all 60 pituitary tumors analyzed. The pattern of expression of the Ptx2 gene among the different subsets of pituitary adenomas was even more varied. No Ptx2 expression could be detected in corticotroph tumors. In contrast, high levels of Ptx2 messenger ribonucleic acid were measured in the gonadotroph tumors, although no specific correlation to other markers of the gonadotroph lineage differentiation, such as alphaGsu, LHbeta, or FSHbeta, could be evidenced. Finally, Ptx2 was also expressed in pure lactotroph adenomas and not in somatotroph adenomas. Ptx2 is, therefore, the first paired homeodomain pituitary transcription factor differentially expressed in these two lineages, which derive from a common precursor. These results support a role for Ptx2 in the terminal differentiation of somatotroph and lactotroph cell phenotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jcem.84.6.5760DOI Listing

Publication Analysis

Top Keywords

transcription factors
12
human pituitary
12
pituitary adenomas
12
ptx1 ptx2
12
expression detected
12
pituitary
10
ptx2
9
family transcription
8
ptx2 ptx3
8
ptx2 gene
8

Similar Publications

[Not Available].

Postepy Biochem

December 2024

Department of Genetics and Clinical Immunology, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland.

Rak trzustki jest często występującym nowotworem o bardzo złych rokowaniach i agresywnym przebiegu. Podstawową przyczyn wysoce niekorzystnych rokowań pacjentów z rakiem trzustki jest jego długotrwale bezobjawowy rozwój, co powoduje postawienie diagnozy na etapie znacznego zaawansowania procesu nowotworowego. Pomimo szeroko zakrojonych badań nad uskutecznieniem diagnostyki i leczenia tego nowotworu, przeżywalność pacjentów wzrasta powoli i nieznacznie.

View Article and Find Full Text PDF

Background: This study aimed to investigate miRNAs and upstream regulatory transcription factors involved in schizophrenia (SZ) pathogenesis.

Methods: Differential expression of miRNAs and genes in SZ patients was investigated utilizing the gene expression omnibus dataset, gene ontology annotations, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Real-time quantitative polymerase chain reaction experiments were conducted to validate the predictive screening of regulatory genes in peripheral blood samples from 20 SZ patients and 20 healthy controls.

View Article and Find Full Text PDF

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is an emerging, mosquito-borne arthritic alphavirus increasingly associated with severe neurological sequelae and long-term morbidity. However, there is limited understanding of the crucial host components involved in CHIKV replicase assembly complex formation, and thus virus replication and virulence-determining factors, within the central nervous system (CNS). Furthermore, the majority of CHIKV CNS studies focus on neuronal infection, even though astrocytes represent the main cerebral target.

View Article and Find Full Text PDF

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!