Background And Purpose: Conventional MR imaging of multiple sclerosis (MS) provides relatively poor pathologic specificity, which has led to the investigation of more sophisticated MR techniques. The purpose of this study was to combine magnetization transfer (MT) imaging and proton MR spectroscopic imaging (MRSI) to evaluate the specific pathologic features of myelination and neuronal integrity in patients with MS and to determine the relationship between these measures within plaques.
Methods: We acquired conventional MR, MT, and proton MRSI data and evaluated clinical disability in 30 patients with MS, whose conditions were categorized as relapsing-remitting, primary progressive, or secondary progressive. The lesions were classified, using a semiautomated edge-following technique, on T2-weighted MR images, and an analysis of MT and proton MRSI data was conducted for lesion regions as well as for tissue that was categorized as normal.
Results: The MT ratio (MTR) of normal-appearing white matter in the patients with MS was significantly lower than in the healthy participants, whereas gray matter values were unchanged. MS lesions showed a large reduction in MTR, with old lesions exhibiting a lower MTR than new lesions. The average lesion MTR and the MR spectroscopic imaging-measured relative concentration of N-acetylaspartate, a marker of neuronal integrity, was positively correlated in patients with relapsing-remitting MS. This relationship was strengthened in regions containing new lesions.
Conclusion: The integrated use of MT and MR spectroscopic imaging provides a more complete description of the pathologic features of MS than does conventional MR imaging alone, and our data suggest that axonal damage occurs in step with new demyelination and is not a late feature of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056133 | PMC |
NMR Biomed
February 2025
MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.
The purpose of this study was to produce metabolite-specific T and concentration maps in a clinically compatible time frame. A multi-TE 2D MR spectroscopic imaging (MRSI) experiment (multi-echo single-shot MRSI [MESS-MRSI]) deployed truncated and partially sampled multi-echo trains from single scans and was combined with simultaneous multiparametric model fitting. It was tested in vivo for the brain in five healthy subjects.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA.
A mammalian breath-hold (BH) mechanism can induce vasoconstriction in the limbs, altering blood flow and oxygenation flow changes in a wound site. Our objective was to utilize a BH paradigm as a stimulus to induce peripheral tissue oxygenation changes via studies on control and diabetic foot ulcer (DFU) subjects. Subjects were imaged under a breath-hold paradigm (including 20 s BH) using a non-contact spatio-temporal-based NIRS device.
View Article and Find Full Text PDFFoods
December 2024
Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea.
Seafood quality preservation remains a critical focus in the food industry, particularly as the freeze-thaw process significantly impacts the freshness and safety of aquatic products. This study investigated quality changes in frozen mackerel subjected to two thawing methods, room temperature (RT) and running water (WT), and assessed the potential of hyperspectral imaging (HSI) for classifying these methods. After thawing, mackerel samples were stored at 5 °C for 21 days, with physicochemical, textural, and spectroscopic analyses tracking quality changes and supporting the development of a spectroscopic classification model.
View Article and Find Full Text PDFNMR Biomed
February 2025
Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka Bangladesh
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!