Basal ganglia and gait control: apomorphine administration and internal pallidum stimulation in Parkinson's disease.

Exp Brain Res

Human Physiology Section, Scientific Institute Santa Lucia, National Research Council, University of Tor Vergata, Rome, Italy.

Published: May 1999

Gait coordination was analyzed (four-camera 100 Hz ELITE system) in two groups of idiopathic Parkinson disease (PD) patients. Five patients underwent continuous infusion of apomorphine and were recorded in two different sessions (APO OFF and APO ON) in the same day. Three patients with a previous chronic electrode implantation in both internal globi pallidi (GPi) were recorded in the same experimental session with the electrodes on and off (STIM ON and STIM OFF). The orientation of both the trunk and the lower-limb segments was described with respect to the vertical in the sagittal plane. Lower-limb inter-segmental coordination was evaluated by analyzing the co-variation between thigh, shank, and foot elevation angles by means of orthogonal planar regression. At least 30 gait cycles per experimental condition were processed. We found that the trunk was bent forward in STIM OFF, whereas it was better aligned with the vertical in STIM ON in both PD groups. The legs never fully extended during the gait cycle in STIM OFF, whereas they extended before heel strike in STIM ON. The multisegmental coordination of the lower limb changed almost in parallel with the changes in trunk orientation. In STIM OFF, both the shape and the spatial orientation of the planar gait loops (thigh angle vs. shank angle vs. foot angle) differed from those of physiological locomotion, whereas in STIM ON the gait loop tended to resume features closer to the control. Switching the electrodes on and off in patients with GPi electrodes resulted in quasi-parallel changes of the trunk inclination and of the planar gait loop. The bulk of the data suggest that the basal-ganglia circuitry may be relevant in locomotion by providing an appropriate spatio-temporal framework for the control of posture and movement in a gravity-based body-centered frame of reference. Pallido-thalamic and/or pallido-mesencephalic pathways may influence the timing of the inter-segmental coordination for gait.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002210050724DOI Listing

Publication Analysis

Top Keywords

gait
8
stim
8
inter-segmental coordination
8
changes trunk
8
planar gait
8
gait loop
8
basal ganglia
4
ganglia gait
4
gait control
4
control apomorphine
4

Similar Publications

Clinical presentation, diagnostic investigations and follow-up of a Bengal tiger ( affected by ambulatory tetraparesis.

Braz J Vet Med

January 2025

Veterinarian, Neurology Department, AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy.

An 11-year-old male Bengal tiger () was referred for a 2-week history of ambulatory tetraparesis, generalized ataxia, and hypermetric gait, associated with mild right head tilt and spontaneous proprioceptive deficit on the right forelimb. Neuroanatomical localization was C1-C5 myelopathy; cerebellum-vestibular system involvement was also considered. Hematology and serum biochemistry were unremarkable, although serum vitamin A (0.

View Article and Find Full Text PDF

Neuromuscular controllers (NMCs) offer a promising approach to adaptive and task-invariant control of exoskeletons for walking assistance, leveraging the bioinspired models based on the peripheral nervous system. This article expands on our previous development of a novel structure for NMCs with modifications to the virtual muscle model and reflex modulation strategy. The modifications consist firstly of simplifications to the Hill-type virtual muscle model, resulting in a more straightforward formulation and reduced number of parameters; and second, using a finer division of gait subphases in the reflex modulation state machine, allowing for a higher degree of control over the shape of the assistive profile.

View Article and Find Full Text PDF

Placing an inertial measurement unit (IMU) at the 5th lumbar vertebra (L5) is a frequently employed method to assess the whole-body center of mass (CoM) motion during walking. However, such a fixed position approach does not account for instantaneous changes in body segment positions that change the CoM. Therefore, this study aimed to assess the congruence between CoM accelerations obtained from these two methods.

View Article and Find Full Text PDF

Impairments on body function, activities of daily living (ADL) and cognition are common after stroke. Eccentric resistance training (ERT) may be implemented to improve them. The primary objectives were to evaluate whether ERT improves body function, ADL and cognition after stroke.

View Article and Find Full Text PDF

Effective surgical planning is crucial for maximizing patient outcomes following complex orthopedic procedures such as proximal femoral osteotomy. In silico simulations can be used to assess how surgical variations in proximal femur geometry, such as femur neck-shaft and anteversion angles, affect postoperative system mechanics. This study investigated the sensitivity of femur mechanics to postoperative neck-shaft angles, anteversion angles, and osteotomy contact areas using patient-specific finite element analysis informed by neuromusculoskeletal models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!