A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acute manipulations of plasma volume alter arterial pressure responses during Valsalva maneuvers. | LitMetric

Acute manipulations of plasma volume alter arterial pressure responses during Valsalva maneuvers.

J Appl Physiol (1985)

Life Sciences Research Laboratories, National Aeronautics and Space Administration, Johnson Space Center, Houston 77058, Texas.

Published: June 1999

The effects of changes in blood volume on arterial pressure patterns during the Valsalva maneuver are incompletely understood. In the present study we measured beat-to-beat arterial pressure and heart rate responses to supine Valsalva maneuvers during normovolemia, hypovolemia induced with intravenous furosemide, and hypervolemia induced with ingestion of isotonic saline. Valsalva responses were analyzed according to the four phases as previously described (W. F. Hamilton, R. A. Woodbury, and H. T. Harper, Jr. JAMA 107: 853-856, 1936; W. F. Hamilton, R. A. Woodbury, and H. T. Harper, Jr. Am. J. Physiol. 141: 42-50, 1944). Phase I is the initial onset of straining, which elicits a rise in arterial pressure; phase II is the period of straining, during which venous return is impeded and pressure falls (early) and then partially recovers (late); phase III is the initial release of straining; and phase IV consists of a rapid "overshoot" of arterial pressure after the release. During hypervolemia, early phase II arterial pressure decreases were significantly less than those during hypovolemia, thus making the response more "square." Systolic pressure hypervolemic vs. hypovolemic falls were -7.4 +/- 2.1 vs. -30.7 +/- 7 mmHg (P = 0.005). Diastolic pressure hypervolemic vs. hypovolemic falls were -2.4 +/- 1.6 vs. -15.2 +/- 2.6 mmHg (P = 0.05). A significant direct correlation was found between plasma volume and phase II systolic pressure falls, and a significant inverse correlation was found between plasma volume and phase III-IV systolic pressure overshoots. Heart rate responses to systolic pressure falls during phase II were significantly less during hypovolemia than during hypervolemia (0.7 +/- 0.2 vs. 2.82 +/- 0.2 beats. min-1. mmHg-1; P = 0.05) but were not different during phase III-IV overshoots. We conclude that acute changes in intravascular volume from hypovolemia to hypervolemia affect cardiovascular responses, particularly arterial pressure changes, to the Valsalva maneuver and should be considered in both clinical and research applications of this maneuver.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1999.86.6.1852DOI Listing

Publication Analysis

Top Keywords

arterial pressure
28
systolic pressure
16
pressure
13
plasma volume
12
pressure falls
12
phase
9
valsalva maneuvers
8
valsalva maneuver
8
heart rate
8
rate responses
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!