Studies on the pyrrolinone metabolites derived from the tobacco alkaloid 1-methyl-2-(3-pyridinyl)pyrrole (beta-nicotyrine).

Chem Res Toxicol

Peters Center for the Study of Parkinson's Disease, Department of Chemistry, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

Published: June 1999

Previous studies have established that the tobacco alkaloid 1-methyl-2-(3-pyridyl)pyrrole (beta-nicotyrine) is biotransformed by rabbit lung and liver microsomal preparations to an equilibrium mixture of the corresponding 3- and 4-pyrrolin-2-ones. Autoxidation of these pyrrolin-2-ones generates the chemically stable 5-hydroxy-5-(3-pyridinyl)-3-pyrrolin-2-one. This paper summarizes efforts to document more completely the pathway leading to this hydroxypyrrolinone. Chemical and spectroscopic evidence implicates the 2-hydroxy-1-methyl-5-(3-pyridinyl)pyrrole (2-hydroxy-beta-nicotyrine) as the key intermediate in this reaction pathway. Of potential toxicological interest is the detection of radical species derived from the autoxidation of this compound.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx990019jDOI Listing

Publication Analysis

Top Keywords

tobacco alkaloid
8
studies pyrrolinone
4
pyrrolinone metabolites
4
metabolites derived
4
derived tobacco
4
alkaloid 1-methyl-2-3-pyridinylpyrrole
4
1-methyl-2-3-pyridinylpyrrole beta-nicotyrine
4
beta-nicotyrine previous
4
previous studies
4
studies established
4

Similar Publications

Cigarette brand variant names and characteristics such as the taste and feel of the smoke can mislead consumers into believing some products are less harmful. We assessed the characteristics of three common cigarette variants sold in Australia, "gold", "blue" and "red", to determine which characteristics differed by color, and which affected tar, nicotine and carbon monoxide (TNCO) yields. TNCO yields, physical parameters, expanded tobacco and filter ventilation were measured in cigarette color variants from eight brands.

View Article and Find Full Text PDF

Metabolomics and ionomics reveal the quality differences among peach, acacia and karaya gums.

Food Res Int

February 2025

College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China. Electronic address:

Despite the diverse industrial applications and health benefits of plant gums, significant variations in quality among different types remain underexplored. This study investigates the differences in antioxidant activity, mineral elements, and metabolic profiles among peach, acacia, and karaya gums. Our findings reveal significant differences in total phenol content, with peach gum exhibiting the highest (20.

View Article and Find Full Text PDF

Cigarette smoking remains an enormous public health problem causing millions of preventable deaths annually worldwide. Although safe and efficient smoking cessation pharmacotherapies such as nicotine replacement products and the medications varenicline and bupropion are available, long-term abstinence rates remain low and new approaches to help smokers successfully quit smoking are needed. In recent years, electronic nicotine delivery systems such as e-cigarettes and heated-tobacco products, and novel smokeless nicotine delivery products like nicotine pouches have gained widespread popularity.

View Article and Find Full Text PDF

Background: Low temperatures disrupt nitrogen metabolism in tobacco, resulting in lower nicotine content in the leaves. 24-epibrassinolide (EBR) is a widely used plant growth regulator known for its roles in enhancing cold tolerance and nitrogen metabolism. Nevertheless, it remains unclear whether EBR enhances leaf nicotine content under low temperature conditions during the mature stage of flue-cured tobacco.

View Article and Find Full Text PDF

High-throughput UPLC-ESI/MSMS method for simultaneous measurement of the urinary metabolites of volatile organic compounds and tobacco alkaloids.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States. Electronic address:

Human exposure to volatile organic compounds (VOCs) poses significant health risks, contributing to cardiovascular disease, pulmonary disease, and cancer. Measurement of VOC metabolites (VOCm) in urine by liquid chromatography-mass spectrometry (LC-MS) is a preferred method for VOCm analysis; however, existing methods encounter challenges related to sensitivity, throughput, and analyte coverage. In addition to VOCm, the measurement of tobacco alkaloids (TAm) is critical to account for tobacco use in population-based studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!