Purpose: By estimating the anatomical distribution of neurons expressing c-fos protein, we sought to establish whether the intrinsic neural systems known to be implicated in the cerebrovascular regulation were activated during the increase in cortical blood flow associated with epileptic seizures.
Methods: A single unilateral microinjection of the cholinergic agonist, carbachol, in the thalamic generalized convulsive seizure area was used in anesthetized rats to elicit recurrent episodes of electrocortical epileptiform activity and an increase in cortical blood flow. Neuronal expression of Fos protein was analyzed to identify activated brain regions.
Results: We identified two cortical vasodilatory responses: a sustained cortical vasodilatory response associated with the continuous low-frequency, high-amplitude spiking and a transient cortical vasodilatory response invariably related to the recurrent spike-burst activity. The sustained cortical blood flow began to increase at 55-65 min, remaining significantly (p < 0.05) increased and reaching at the end of the experiment < or =182+/-17% of the prestimulated control. The electrocortical epileptic activity and the cerebral cortical vasodilation were associated with a marked increase in Fos immunoreactivity in the entorhinal and piriform cortices, the dentate gyrus, the hippocampus, and the amygdala. Fos-positive neurons also were found in specific thalamic nuclei, the cerebral cortex, the caudate-putamen, the hypothalamus, the pontine parabrachial nuclei, the dorsal raphe, and the rostral ventrolateral medulla.
Conclusions: These results provide evidence that convulsive seizures elicited by cholinergic stimulation of the thalamus, in addition to limbic and somatic motor systems, activate central autonomic nuclei and their pathways, including those implicated in cerebrovascular regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1528-1157.1999.tb00764.x | DOI Listing |
Int J Dev Neurosci
February 2025
Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Most of the malformations of the polymicrogyria spectrum are caused by destructive lesions of the neocortex during the third trimester of pregnancy, triggered by hypoxic-ischemic, hemorrhagic or infectious events, with neuroinflammation as a common pathophysiological mechanism. Our study investigated hydrocortisone treatment in attenuating inflammation, malformations development and seizures predisposition in mice subjected to neonatal transcranial freeze lesion. Our results show attenuation of malformation and predisposition to febrile seizures, with concomitant reduction of macrophages/microglia after neonatal freeze lesion, polarizing them towards an anti-inflammatory profile.
View Article and Find Full Text PDFPrimary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation.
View Article and Find Full Text PDFThe idea of self-organized signal processing in the cerebral cortex has become a focus of research since Beggs and Plentz reported avalanches in local field potential recordings from organotypic cultures and acute slices of rat somatosensory cortex. How the cortex intrinsically organizes signals remains unknown. A current hypothesis was proposed by the condensed matter physicists Bak, Tang, and Wiesenfeld when they conjectured that if neuronal avalanche activity followed inverse power law distributions, then brain activity may be set around phase transitions within self-organized signals.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland. Electronic address:
The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
a β-proteobacterium, forms a nitrogen-fixing symbiosis with many species of the large legume genus as well as with common bean ( L.). are considered to have evolved nodulation independently from the well-studied α-proteobacteria symbionts of legumes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!