Objective: Our experiments were designed to test the hypothesis that tendon cells might respond differently to applied strain in vitro than in vivo.

Design: We tested cells in whole tendons from exercised chickens and from isolated surface (TSC) and internal tendon (TIF) in vitro that were subjected to mechanical strain. We hypothesized that tendon cells differentially express genes in response to mechanical loading in vivo and in vitro.

Methods: We utilized an in-vivo exercise model in which chickens were run on a treadmill in an acute loading regime for 1 h 45 min with the balance of time at rest to 6 h total time. Gene expression was analyzed by a differential display technique. In addition, isolated avian flexor digitorum profundus TSC and TIF cells were subjected to cyclic stretching at 1 Hz, 5% average elongation for 6 h, +/- PDGF-BB, IGF-I, TGF-beta 1, PTH, estrogen, PGE2, or no drug and/or no load. mRNA was then collected and samples were subjected to differential display analysis.

Conclusions: Load with or without growth factor and hormone treatments induced expression of novel genes as well as some known genes that were novel to tendon cells. We conclude that the study of gene expression in mechanically loaded cells in vivo and in vitro will lead to the discovery of novel and important marker proteins that may yield clues to positive and negative cell strain responses that are protective under one set of conditions and destructive under another.

Download full-text PDF

Source
http://dx.doi.org/10.1053/joca.1998.0169DOI Listing

Publication Analysis

Top Keywords

tendon cells
16
expression novel
8
novel genes
8
vivo vitro
8
avian flexor
8
gene expression
8
differential display
8
cells
7
tendon
5
mechanical load
4

Similar Publications

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.

Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.

View Article and Find Full Text PDF

Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.

View Article and Find Full Text PDF

Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.

View Article and Find Full Text PDF

Background: Post-surgical tendon adhesion formation is a frequent clinical complication with limited treatment options. The aim of this study is to investigate safety and efficacy of orally administration of crocin in attenuating post-operative tendon-sheath adhesion bands in an Achilles tendon rat model.

Methods: Structural, mechanical, histological, and biochemical properties of Achilles tendons were analyzed in the presence and absence of crocin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!