The effects were studied of short-term heating of contaminated soil and its soaking in an organic solvent on the subsequent biodegradation of PAHs. In a clayey dredged sludge with a high organic-matter content (12%), heating at 120 degrees C for one hour increased the degree of degradation after 21 days of an aged PAH contamination from 9.5 +/- 0.7% to 27 +/- 5%. Lower temperatures resulted in smaller increases. The observed increase in biodegradation is caused by either transfer of PAHs from sorption sites with low desorption rates to those with high ones or transformation of slow-sorption sites into fast-sorption ones. Soaking of the above sludge in a 4:1 (v/v) acetone-water mixture increased the degree of degradation from 9.5 +/- 0.7% to 20.4 +/- 1.4%, probably as a result of dissolution of the PAHs in the pore liquid during soaking. Thermal pretreatment of a contaminated sandy soil with a low organic-matter content showed no significant effect on the degradation of aged PAHs. Soaking of the sandy soil increased the degradation of only PAHs of high molecular weight, namely from 24 +/- 5% to 48 +/- 7%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0045-6535(98)00574-8 | DOI Listing |
Front Microbiol
January 2025
Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.
Introduction: Agriculture is undergoing an agroecological transition characterized by adopting new practices to reduce chemical fertilizer inputs. In this context, digestates are emerging as sustainable substitutes for mineral fertilizers. However, large-scale application of digestates in agricultural fields requires rigorous studies to evaluate their long-term effects on soil microbial communities, which are crucial for ecosystem functioning and resilience.
View Article and Find Full Text PDFGlufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.
View Article and Find Full Text PDFChem Biodivers
January 2025
Sari Agricultural Sciences and Natural Resources University, Rangeland Sciences, sari, IRAN, ISLAMIC REPUBLIC OF.
This study investigates the influence of environmental factors on the secondary metabolites of Stachyslavandulifolia Vahl., focusing on how soil properties, temperature, and precipitation affect the yield and chemical composition of its essential oils. The research was conducted in two domains within three rangelands in Mazandaran province, Iran.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
College of Resources and Environment, Henan Agricultural University, Zhengzhou, China.
Multifunctional plant growth-promoting rhizobacteria (PGPR) have garnered significant attention in agricultural applications; however, a few have applied them in crop rotation or intercropping fields. To identify PGPR with strong colonization ability and broad spectrum benefit, we screened strains from the local tobacco rhizosphere and evaluated their growth-promoting effects across various crops and farming systems. In this study, strain L8, identified as , was selected as a multifunctional PGPR capable of producing indole-3-acetic acid (IAA), solubilizing potassium, and mobilizing both organic and inorganic phosphorus.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China.
Nitrogen fertilizer application is an important method for the production of high-quality maize. However, nitrogen fertilizer addition patterns vary according to regional climate, field management practices, and soil conditions. In this study, a meta-analysis was used to quantify the yield effects of nitrogen addition on maize, and meta-regression analysis and a random forest model were used to study the main factors affecting the yield effects of nitrogen addition on maize.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!