Four diphenylfuran derivatives possessing different dicationic terminal side chains were used to investigate sequence-specific binding to DNA and poisoning of human topoisomerase II. Footprinting experiments with a range of DNA substrates attest that all four drugs bind selectively to AT-rich sequences in DNA. However, the quantitative analysis of the footprinting profiles reveals significant differences in terms of AT-selectivity according to the nature of the basic side chains. Furimidazoline (DB60) shows a reduced capacity to interact selectively with A.T tetrads compared with furamidine (DB75) and the 3-pentyl-substituted diamidine analogue DB226. DB244, for which the two amidine ends are substituted with a cyclopentyl group, exhibits the most pronounced AT specificity. It binds tightly to sites composed of at least four adjacent AT base pairs, such as 5'-TAAT, AATT and TTTT. At low concentrations (< 2 microM) DB60 is also capable of forming stable complexes with AT sites but at higher concentrations the binding becomes totally non-specific due to additional intercalation of drug molecules into GC-rich sequences. Nevertheless, DB60 is the only drug is the series which stabilizes DNA-topoisomerase II covalent complexes. This compound effectively promotes DNA cleavage by topoisomerase II whereas DB75, DB226 and DB244 have practically no effect. The topoisomerase II poisoning activity of DB60 correlates with its ability to intercalate into GC sites in DNA whereas the three other diphenylfurans essentially behave as typical AT-selective minor groove binders. The study suggests that the antimicrobial activity of the diphenylfurans, which are active against the Pneumocystis carinii pathogen (PCP), depends essentially on their capacity to recognize AT-rich DNA sequences rather than their ability to interfere with topoisomerase II. In contrast, the cytotoxicity of drugs like DB60 would be connected with the formation of intercalation complexes and the stimulation of DNA cleavage by human topoisomerase II.
Download full-text PDF |
Source |
---|
Vet Parasitol
January 2025
Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern 3012, Switzerland. Electronic address:
The protozoan parasite Neospora caninum is an important cause of abortion in cattle. Infection occurs horizontally by ingestion of oocysts shed by canids or vertically, from an infected dam to the foetus, and may result in abortion, stillbirth, or the birth of subclinically infected offspring. We estimated the occurrence of N.
View Article and Find Full Text PDFGenome
January 2025
ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, India;
India harbours a substantial population of 9.43 million dogs, showcasing diverse phenotypes and utility. Initiatives focusing on awareness, conservation and informed breeding can greatly enhance the recognition and welfare of the unique Indian canine heritage.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States of America.
Reactivation of Trypanosoma cruzi transmission by native vectors with different domiciliation capabilities is a major concern for Chagas disease control programs. T. cruzi transmission via intra-domestic Rhodnius prolixus was certified as interrupted by the Pan American Health Organization in Miraflores municipality (Boyacá, Colombia) in 2019.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Background: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochemical (IHC) staining of particular proteins is highly beneficial, as it could reduce the burden on pathologists. Interestingly, there have been no prior studies that have examined G3BP1 IHC staining using digital pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!