The structure and fold of the enzyme responsible for the biosynthesis of the xenotransplantation antigen, namely pig alpha3 galactosyltransferase, has been studied by means of computational methods. Secondary structure predictions indicated that alpha3-galactosyltransferase and related protein family members, including blood group A and B transferases and Forssman synthase, are likely to consist of alternating alpha-helices and beta-strands. Fold recognition studies predicted that alpha3-galactosyltransferase shares the same fold as the T4 phage DNA-modifying enzyme beta-glucosyltransferase. This latter enzyme displays a strong structural resemblance with the core of glycogen phosphorylase b. By using the three-dimensional structure of beta-glucosyltransferase and of several glycogen phosphorylases, the nucleotide binding domain of pig alpha3-galactosyltransferase was built by knowledge-based methods. Both the UDP-galactose ligand and a divalent cation were included in the model during the refinement procedure. The final three-dimensional model is in agreement with our present knowledge of the biochemistry and mechanism of alpha3-galactosyltransferases.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/9.7.713DOI Listing

Publication Analysis

Top Keywords

fold recognition
8
fold
4
recognition study
4
alpha3-galactosyltransferase
4
study alpha3-galactosyltransferase
4
alpha3-galactosyltransferase molecular
4
molecular modeling
4
modeling nucleotide
4
nucleotide sugar-binding
4
sugar-binding domain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!