In higher vertebrates, the glycolytic enzyme enolase (2-phospho-D-glycerate hydrolyase; EC 4.2.1.11) is active as a dimeric protein formed from three subunits--alpha: ubiquitous, beta: muscle specific, and gamma: neuron specific--encoded by different genes. In the present study, we have shown that an antiserum previously produced against the mouse beta beta enolase is also a specific reagent for the muscle specific human enolase. Using this antiserum to study human muscles, we demonstrated novel patterns of the beta subunit microheterogeneity which are distinctive from those observed previously in rodents and which appear to be independent of age, gender and muscular activity. Two variants of the beta subunit differing by their size have been detected: one heavy form of 46 kDa (beta H) and one light form of 45 kDa (beta L). Muscle biopsies expressed either beta H or beta L or beta H + beta L, and all muscles of an individual expressed the same variants. The products of in vitro translation of RNA prepared from human muscle displayed beta subunit variants identical to those of the protein present in the biopsy. Therefore the differences observed between individuals reveal a difference already present at the level of the RNA transcripts. These observations suggest the existence of an yet undescribed polymorphism of the human beta enolase gene which could affect the coding sequence. Comparative immunocytochemical and histochemical analyses of biopsies demonstrated that the beta subunit was expressed in all fast fibres (type II), but not in slow fibres (type I). No difference was observed in the intensity of beta enolase immunolabelling between the various types (IIA, IIAB, IIB) of fast fibres. No significant difference in fibre type composition and histological appearance was visible between muscles presenting either one of the three patterns of microheterogeneity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1005428328913 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!