Annexin II increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures.

J Clin Invest

Department of Medicine/Hematology, University of Texas Health Science Center, San Antonio, Texas 78284, USA Audie Murphy Veterans Administration Hospital, San Antonio, Texas 78284, USA.

Published: June 1999

Annexin II (AXII), a calcium-dependent phospholipid-binding protein, has been recently found to be an osteoclast (OCL) stimulatory factor that is also secreted by OCLs. In vitro studies showed that AXII induced OCL formation and bone resorption. However, the mechanism of action by which AXII acts as a soluble extracellular protein to induce OCL formation is unknown. In this paper, we demonstrate that AXII gene expression is upregulated by 1,25-dihydroxyvitamin D3 [1, 25-(OH)2D3] and that addition of AXII significantly increased OCL-like multinucleated cell formation. Time-course studies suggested that AXII acted on the proliferative stage of OCL precursors and that AXII increased thymidine incorporation in OCL precursors. Moreover, AXII enhanced the growth of CFU-GM, the earliest identifiable OCL precursor, when bone marrow cultures were treated with low concentrations of GM-CSF. This capacity of AXII to induce OCL precursor proliferation was due to induction of GM-CSF expression, because the addition of neutralizing antibodies to GM-CSF blocked the stimulatory effect of AXII on OCL formation. RT-PCR analysis using RNA from highly purified subpopulations of marrow cells demonstrated that T cells, especially CD4(+) T cells, produced GM-CSF in response to AXII. Furthermore, FACS(R) analysis of T-cell subpopulations treated with fluorescein-labeled AXII suggested that the CD4(+), but not CD8(+), subpopulation of T cells express an AXII receptor. Taken together, these data suggest that AXII stimulates OCL formation by activating T cells through a putative receptor to secrete GM-CSF. GM-CSF then expands the OCL precursor pool to enhance OCL formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC408373PMC
http://dx.doi.org/10.1172/JCI6374DOI Listing

Publication Analysis

Top Keywords

ocl formation
20
axii
14
ocl precursor
12
ocl
11
marrow cultures
8
induce ocl
8
axii increased
8
ocl precursors
8
precursors axii
8
formation
7

Similar Publications

Bone is a frequent site for breast cancer metastasis. The vast majority of breast cancer-associated metastasis is osteolytic in nature, and RANKL (receptor activator for nuclear factor κB)-induced differentiation of bone marrow-derived macrophages to osteoclasts (OCLs) is a key requirement for osteolytic metastatic growth of cancer cells. In this study, we demonstrate that Myocardin-related transcription factor (MRTF) in breast cancer cells plays an important role in paracrine modulation of RANKL-induced OCL differentiation.

View Article and Find Full Text PDF

Microbial fuel cell-assisted composting yields higher performance on metals passivation, antibiotics degradation, and resistance genes removal.

Environ Res

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China. Electronic address:

Little scientific evidence on metal passivation, antibiotic degradation and resistance genes removal, is available under autogenetic electrochemical reactions during composting process. This study established microbial fuel cell (MFC)-assisted composting procedure to ascertain the removal performance and detoxification mechanisms involving metals, antibiotics and their resistance genes. Compared to control treatment, the bioavailability of zinc (Zn) and copper (Cu) in MFC-assisted treatment decreased by 7.

View Article and Find Full Text PDF

The use of electrochemical oxidation with boron-doped diamond (BDD) as an anode has been demonstrated to be an effective means of removing dissolved organic matter (DOM) from biologically treated waste leachate. However, in the presence of chloride ions, undesired chlorine evolution occurs on the anode; this forms chlorinated DOM, mostly of unknown molecular composition. We investigate the molecular composition and formation mechanism of chlorinated DOM during electrochemical oxidation process of biologically treated leachate DOM.

View Article and Find Full Text PDF

Objective: Aims: This study aimed to estimate outcome of combined application of collagen/β-tricalcium phosphate (Coll /β- TCP) on bone defect healing by immuno-histochemical localization of collagen type I.

Patients And Methods: Materials and Methods: A total of 20 adult male rats (albino rats) were used in this study. Four intra bony defects were created in both femurs of each rat, three defects were treated with Coll, β- TCP and combination of Coll /β- TCP while forth defect left to heal spontaneously as control.

View Article and Find Full Text PDF

A multifunctional rhodamine derivative containing azo-salicylaldehyde (BBS) was designed and synthesized as a colorimetric and fluorescence turn-on probe for the selective detection of copper cations (Cu) and hypochlorite anions (OCl) in aqueous media. In the presence of Cu, the probe BBS exhibited turn-on absorption and fluorescence change at 554 nm and 585 nm, respectively. The binding mechanism of BBS with Cu induces the opening of a spirolactam ring in the rhodamine moiety by the formation of a metal-ligand complex, achieving 10-fold enhancement in fluorescence and quantum yield, along with a binding constant of 1 × 10 M and a detection limit of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!