The lipopolysaccharide (LPS) of Chlamydia trachomatis L2 was isolated from tissue culture-grown elementary bodies using a modified phenol/water procedure followed by extraction with phenol/chloroform/light petroleum. From a total of 5 x 10(4) cm2 of infected monolayers, 22.3 mg of LPS were obtained. Compositional analysis indicated the presence of 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo), GlcN, phosphorus, and fatty acids in a molar ratio of 2.8:2:2.1:4.5. Matrix-assisted laser-desorption ionization mass spectrometry performed on the de-O-acylated LPS gave a major molecular ion peak at m/z 1781.1 corresponding to a molecule of 3 Kdo, 2 GlcN, 2 phosphates, and two 3-hydroxyeicosanoic acid residues. The structure of deacylated LPS obtained after successive treatment with hydrazine and potassium hydroxide was determined by 600 MHz NMR spectroscopy as Kdoalpha2-->8Kdoalpha2-->4Kdoalpha2-->6D-GlcpNbeta1 -->6D-GlcpNalpha 1,4'-bisphosphate. These data, together with those published recently on the acylation pattern of chlamydial lipid A (Qureshi, N., Kaltashov, I., Walker, K., Doroshenko, V., Cotter, R. J., Takayama, K, Sievert, T. R., Rice, P. A., Lin, J.-S. L., and Golenbock, D. T. (1997) J. Biol. Chem. 272, 10594-10600) allow us to present for the first time the complete structure of a major molecular species of a chlamydial LPS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.274.24.16819 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!