The replication complexes of all positive strand RNA viruses of eukaryotes are associated with membranes. In the case of Semliki Forest virus (SFV), the main determinant of membrane attachment seems to be the virus-encoded non-structural protein NSP1, the capping enzyme of the viral mRNAs, which has guanine-7-methyltransferase and guanylyltransferase activities. We show here that both enzymatic activities of SFV NSP1 are inactivated by detergents and reactivated by anionic phospholipids, especially phosphatidylserine. The region of NSP1 responsible for binding to membranes as well as to liposomes was mapped to a short segment, which is conserved in the large alphavirus-like superfamily of viruses. A synthetic peptide of 20 amino acids from the putative binding site competed with in vitro synthesized NSP1 for binding to liposomes containing phosphatidylserine. These findings suggest a molecular mechanism by which RNA virus replicases attach to intracellular membranes and why they depend on the membranous environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171397PMC
http://dx.doi.org/10.1093/emboj/18.11.3164DOI Listing

Publication Analysis

Top Keywords

semliki forest
8
forest virus
8
capping enzyme
8
virus mrna
4
mrna capping
4
enzyme requires
4
requires association
4
association anionic
4
anionic membrane
4
membrane phospholipids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!