Metabolic proficiency and benzo[a]pyrene DNA adduct formation in APCMin mouse adenomas and uninvolved mucosa.

Carcinogenesis

University Department of Surgery, The Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.

Published: June 1999

Tumour formation may involve interactions between genetic factors and environmental carcinogens. Adenoma formation in APCMin/+ mice is associated homozygous adenomatous polyposis coli (APC) gene mutation, but the effects on carcinogen susceptibility are unknown. This study tests the hypothesis that APCMin/+ adenoma formation is accompanied by changes in metabolic proficiency and carcinogen susceptibility. Cytochrome P450 (CYP)1A1/1A2, glutathione S-transferase (GST)alpha, mu and pi classes and DNA adduct formation were assayed in adenomas and uninvolved mucosa from APCMin/+ mice, before and after benzo[a]pyrene (B[a]P) treatment. In untreated adenomas and mucosa, CYP1A1/1A2 and B[a]P-DNA adducts were undetected but GSTalpha, mu and pi class enzymes were constitutively expressed. In adenomas, B[a]P only induced CYP1A1/1A2 to low level while GSTalpha and pi class enzymes were unaffected. A GST mu band which was absent from mucosa, was induced in adenomas. In mucosa, B[a]P induced CYP1A1/1A2 and GSTalpha and pi, to high levels. B[a]P-DNA adduct levels were 56 +/- 15/10(8) nucleotides (median +/- SE) in adenomas versus 89 +/- 19/10(8) nucleotides in mucosa (P < 0.0001). APCMin adenomas show reduced bioactivation capacity and sustain less DNA damage from B[a]P exposure, than APCMin uninvolved mucosa. These properties could influence mutagenesis and subsequent neoplastic transformation of adenomas.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/20.6.1097DOI Listing

Publication Analysis

Top Keywords

uninvolved mucosa
12
metabolic proficiency
8
dna adduct
8
adduct formation
8
adenomas
8
adenomas uninvolved
8
adenoma formation
8
apcmin/+ mice
8
carcinogen susceptibility
8
adenomas mucosa
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!