Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa.

J Biomed Mater Res

Department of Bioengineering, University of Pittsburgh, Pennsylvania 15260, USA.

Published: July 1999

Porcine small intestinal submucosa (SIS) has been shown to serve as a remodelable tissue scaffold in a wide range of applications. Despite the large number of experimental studies, there is a lack of fundamental information on SIS anisotropic mechanical behavior and how this behavior changes postimplantation. As a first step in our study of remodeling biomaterials, we performed biaxial mechanical testing to quantify the anisotropic mechanical behavior and used small-angle light scattering (SALS) to quantify the gross fiber structure of fresh, unimplanted SIS. Structural results indicate that SIS displays primarily a single, continuous preferred fiber direction oriented parallel to the long axis of the intestine. Occasionally, two distinct fiber populations oriented at approximately +/-28 degrees with respect to the longitudinal axis could be distinguished. Consistent with this structure, SIS exhibited a nonlinear, anisotropic mechanical response with higher stresses along the longitudinal axis. Further, the circumferential stress-strain response was strongly affected by the maximum longitudinal strain level, but the maximum circumferential strain level only weakly affected the longitudinal stress-strain response. This asymmetric mechanical coupling suggests strong mechanical interactions on a fiber level. SIS stress-strain response also was similar to glutaraldehyde-treated bovine pericardium, attesting to the substantial strength of SIS in the fresh, untreated state. The results of this study will provide a basis for a future analysis of the structural and mechanical changes during the remodeling process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1097-4636(199907)46:1<1::aid-jbm1>3.0.co;2-7DOI Listing

Publication Analysis

Top Keywords

mechanical behavior
12
anisotropic mechanical
12
stress-strain response
12
mechanical
8
biaxial mechanical
8
intestinal submucosa
8
longitudinal axis
8
strain level
8
sis
7
quantification fiber
4

Similar Publications

Novel patterns in discrete Ikeda map: Quint points and complex non-quantum chirality.

Chaos

January 2025

School of Mechanical and Power Engineering, Zhengzhou University, Science Road 100, 450001 Zhengzhou, China.

In this paper, the complex and dynamically rich distribution of stable phases in the well-known discrete Ikeda map is studied in detail. The unfolding patterns of these stable phases are described through three complementary stability diagrams: the Lyapunov stability diagram, the isoperiod stability diagram, and the isospike stability diagram. The adding-doubling complexification cascade and fascinating non-quantum chiral pairs are discovered, marking the first report of such structures in discrete mapping.

View Article and Find Full Text PDF

Nanostructural Analysis of Age-Related Changes Affecting Human Dentin.

Calcif Tissue Int

January 2025

Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan.

Human dentin performs its function throughout life, even though it is not remodeled like bone. Therefore, dentin must have extreme durability against daily repetitive loading. Elucidating its durability requires a comprehensive understanding of its shape, structure, and anisotropy at various levels of its structure.

View Article and Find Full Text PDF

The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.

View Article and Find Full Text PDF

Currently, it is a significant challenge to achieve long-term cyclability and fast chargeability in lithium-ion batteries, especially for the Ni-based oxide cathode, due to severe chemo-mechanical degradation. Despite its importance, the fast charging long-term cycling behaviour is not well understood. Therefore, we comprehensively evaluate the feasibility of fast charging applications for Co-free layered oxide cathodes, with a focus on the extractable capacity and cyclability.

View Article and Find Full Text PDF

BACT: nonparametric Bayesian cell typing for single-cell spatial transcriptomics data.

Brief Bioinform

November 2024

Institute of Statistics and Big Data, Renmin University of China, No. 59 Zhongguancun Street, 100872 Beijing, China.

The spatial transcriptomics is a rapidly evolving biological technology that simultaneously measures the gene expression profiles and the spatial locations of spots. With progressive advances, current spatial transcriptomic techniques can achieve the cellular or even the subcellular resolution, making it possible to explore the fine-grained spatial pattern of cell types within one tissue section. However, most existing cell spatial clustering methods require a correct specification of the cell type number, which is hard to determine in the practical exploratory data analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!