Discrimination of DNA hybridization using chemical force microscopy.

Biophys J

Department of Chemistry, Stanford University, Stanford, California 94305, USA.

Published: June 1999

Atomic force microscopy (AFM) can be used to probe the mechanics of molecular recognition between surfaces. In the application known as "chemical force" microscopy (CFM), a chemically modified AFM tip probes a surface through chemical recognition. When modified with a biological ligand or receptor, the AFM tip can discriminate between its biological binding partner and other molecules on a heterogeneous substrate. The strength of the interaction between the modified tip and the substrate is governed by the molecular affinity. We have used CFM to probe the interactions between short segments of single-strand DNA (oligonucleotides). First, a latex microparticle was modified with the sequence 3'-CAGTTCTACGATGGCAAGTC and epoxied to a standard AFM cantilever. This DNA-modified probe was then used to scan substrates containing the complementary sequence 5'-GTCAAGATGCTACCGTTCAG. These substrates consisted of micron-scale, patterned arrays of one or more distinct oligonucleotides. A strong friction interaction was measured between the modified tip and both elements of surface-bound DNA. Complementary oligonucleotides exhibited a stronger friction than the noncomplementary sequences within the patterned array. The friction force correlated with the measured strength of adhesion (rupture force) for the tip- and array-bound oligonucleotides. This result is consistent with the formation of a greater number of hydrogen bonds for the complementary sequence, suggesting that the friction arises from a sequence-specific interaction (hybridization) of the tip and surface DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300264PMC
http://dx.doi.org/10.1016/S0006-3495(99)77447-3DOI Listing

Publication Analysis

Top Keywords

force microscopy
8
complementary sequence
8
modified
5
discrimination dna
4
dna hybridization
4
hybridization chemical
4
force
4
chemical force
4
microscopy atomic
4
atomic force
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!