Under physiological conditions, filamentous actin (F-actin) is a polyanionic protein filament. Key features of the behavior of F-actin are shared with other well-characterized polyelectrolytes, in particular, duplex DNA. For example, the bundle formation of F-actin by polyvalent cations, including divalent metal ions such as Mg2+, has been proposed to be a natural consequence of the polyelectrolyte nature of actin filaments [Tang and Janmey (1996) J. Biol. Chem. 271, 8556-8563]. This recently proposed model also suggests that weak interactions between F-actin and Mg2+ ions reflect a nonspecific trapping of counterions in the electric field surrounding F-actin due to its polyelectrolyte nature. To test this hypothesis, we have performed 25Mg NMR measurements in F-actin solutions. Based on the NMR data, we estimate that the rotational correlation times of Mg2+ are independent of the overall rotational dynamics of the actin filaments. Moreover, competitive binding experiments demonstrate a facile displacement of F-actin-bound Mg2+ by Co(NH3)63+. At higher Co(NH3)63+ concentrations, a fraction of the magnesium ions are trapped as actin filaments aggregate. ATP also competes effectively with actin filaments for binding to Mg2+. These results support the hypothesis that magnesium ions bind loosely and nonspecifically to actin filaments, and thus show a behavior typical of counterions in polyelectrolyte solutions. The observed features mimic to some extent the well-documented behavior of counterions in DNA solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi982301f | DOI Listing |
Methods Mol Biol
January 2025
Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.
The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes.
View Article and Find Full Text PDFIn addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons.
View Article and Find Full Text PDFStem cells adapt to their local mechanical environment by rearranging their cytoskeleton, which underpins the evolution of their shape and fate as well as the emergence of tissue structure and function. Here, in the second part of a two-part experimental series, we aimed to elucidate spatiotemporal cytoskeletal remodeling and resulting changes in morphology and mechanical properties of cells and their nuclei. Akin to mechanical testing of the most basic living and adapting unit of life, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!