Human gliomas, especially of low-grade type, have been shown to express high-affinity somatostatin receptor type 2 (J-C. Reubi et al., Am. J. Pathol, 134: 337-344, 1989). We enrolled seven low-grade and four anaplastic glioma patients in a pilot study using the diffusible peptidic vector 90Y-labeled DOTA0-D-Phe1-Tyr3-octreotide (DOTATOC) for receptor targeting. The radiopharmakon was locoregionally injected into a stereotactically inserted Port-a-cath. DOTATOC competes specifically with somatostatin binding to somatostatin receptor type 2 in the low nanomolar range as shown by a displacement curve of 125I-[Tyr3]-octreotide in tumor tissue sections. Diagnostic (111)In-labeled DOTATOC-scintigraphy following local injection displayed homogeneous to nodular intratumoral vector distribution. The cumulative activity of regionally injected peptide-bound 90Y amounted to 370-3300 MBq, which is equivalent to an effective dose range between 60 +/- 15 and 550 +/- 110 Gy. Activity was injected in one to four fractions according to tumor volumes; 1110 MBq of 90Y-labeled DOTATOC was the maximum activity per single injection. We obtained six disease stabilizations and shrinking of a cystic low-grade astrocytoma component. The only toxicity observed was secondary perifocal edema. The activity:dose ratio (MBq:Gy) represents a measure for the stability of peptide retention in receptor-positive tissue and might predict the clinical course. We conclude that SR-positive human gliomas, especially of low-grade type, can be successfully targeted by intratumoral injection of the metabolically stable small regulatory peptide DOTATOC.
Download full-text PDF |
Source |
---|
Mol Pharm
January 2025
Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
This study aimed to develop and evaluate a novel fibroblast activation protein (FAP)-specific tracer, fluorine-18-labeled fibroblast activation protein inhibitor-FUSCC-07 ([F]F-FAPI-FUSCC-07), for use in both preclinical and clinical settings. Preclinical evaluations were conducted to assess the stability and partition coefficient of [F]F-FAPI-FUSCC-07. Experiments involving human glioma U87MG cells demonstrated its cellular uptake and inhibitory properties.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Computer Science, Islamic University of Science and Technology (IUST), Kashmir, 192122, India.
Background: Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor patient prognosis. The survival rate remains low despite standard therapies, highlighting the urgent need for novel treatment strategies. Advanced imaging techniques, particularly magnetic resonance imaging (MRI), are crucial in assessing GBM.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neuro-Oncology, Columbia University Irving Medical Center, 710 W. 168th Street, New York, NY, 10032, USA.
Glioblastoma (GBM) classification involves a combination of histological and molecular signatures including IDH1/2 mutation, TERT promoter mutation, and EGFR amplification. Non-canonical mutations such as BRAF, found in 1-2% of GBMs, activate the MEK-ERK signaling pathway. This mutation can be targeted by small molecule inhibitors, offering therapeutic potential for GBM.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
Glioma is a common and destructive brain tumor, which is highly heterogeneous with poor prognosis. Developing diagnostic and prognostic markers to identify and treat glioma early would significantly improve the therapeutic outcomes. Here, we conducted RNA next-generation sequencing with 33 glioma samples and 15 normal brain samples.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ);
Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!