Polymorphism in structure of the retrotransposable element 412 in Drosophila simulans and D. melanogaster populations.

Gene

Laboratoire de Biométrie, Génétique, Biologie des populations, UMR C.N.R.S. 5558, Université Lyon 1, 69622, Villeurbanne, France.

Published: May 1999

The structure of the 412 retrotransposable element was investigated in various natural populations of D. melanogaster and D. simulans by a restriction enzyme analysis. We show that although the canonical structure of the 412 element was the same in both species, a high structural polymorphism existed with various rearranged elements. A 412 family was thus composed of heterogeneous copies of different sizes, with a large proportion of full-size copies. D. simulans had more rearranged copies than D. melanogaster, with some specific copies, such as a 5.6-kb BsrBI fragment, present in all populations of D. simulans. Full-size and rearranged copies were detected in both the euchromatin and the heterochromatin, with many rearranged copies in D. simulans, suggesting a recent mobilization of the 412 element in this species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(99)00126-2DOI Listing

Publication Analysis

Top Keywords

rearranged copies
12
retrotransposable element
8
structure 412
8
412 element
8
element species
8
copies simulans
8
copies
6
0
5
simulans
5
polymorphism structure
4

Similar Publications

A de novo, mosaic and complex chromosome 21 rearrangement causes APP triplication and familial autosomal dominant early onset Alzheimer disease.

Sci Rep

January 2025

Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Copy number variation (CNV) of the amyloid-β precursor protein gene (APP) is a known cause of autosomal dominant Alzheimer disease (ADAD), but de novo genetic variants causing ADAD are rare. We report a mother and daughter with neuropathologically confirmed definite Alzheimer disease (AD) and extensive cerebral amyloid angiopathy (CAA). Copy number analysis identified an increased number of APP copies and genome sequencing (GS) revealed the underlying complex genomic rearrangement (CGR) including a triplication of APP with two unique breakpoint junctions (BPJs).

View Article and Find Full Text PDF

Robust multi-read reconstruction from noisy clusters using deep neural network for DNA storage.

Comput Struct Biotechnol J

December 2024

Systems Biology Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

DNA holds immense potential as an emerging data storage medium. However, the recovery of information in DNA storage systems faces challenges posed by various errors, including IDS errors, strand breaks, and rearrangements, inevitably introduced during synthesis, amplification, sequencing, and storage processes. Sequence reconstruction, crucial for decoding, involves inferring the DNA reference from a cluster of erroneous copies.

View Article and Find Full Text PDF

Telomerase is reactivated by genomic TERT rearrangements in ~30% of diagnosed high-risk neuroblastomas. Dismal patient prognosis results if the RAS/MAPK/ALK signaling transduction network also harbors mutations. We present a liquid biopsy-based monitoring strategy for this particularly vulnerable pediatric patient subgroup, for whom real-time molecular diagnostic tools are limited to date.

View Article and Find Full Text PDF

Purpose: Uniparental disomy (UPD) is a genetic condition which both copies of a chromosome are inherited from a single parent, potentially leading to imprinting disorders. This study aimed to assess the integration of Short Tandem Repeat (STR) analysis into Preimplantation Genetic Testing for Structural Rearrangements (PGT-SR) to assess UPD risk and its impact on selecting euploid embryos for embryo transfer in couples with chromosomal translocations involving imprinted chromosomes.

Methods: This study evaluated three couples carrying balanced chromosomal translocations: 45,XX,der(13;14)(q10;q10), 46,XX,t(10;11)(q22;q13), and 45,XY,der(14;15)(q10;q10).

View Article and Find Full Text PDF
Article Synopsis
  • * Sometimes TSDs are absent due to degeneration, recombination between ISs, or adjacent deletions, which are common occurrences illustrated by data from the Lenski long-term evolution experiment.
  • * The study proposes that certain IS movements associated with large-scale genomic rearrangements may not generate TSDs and provides observations of such events, suggesting that IS activity could drive significant genomic changes like deletions and duplications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!