We have recently identified a membrane vitamin D receptor (mVDR) specific for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and shown that it mediates the rapid activation of protein kinase C (PKC) in growth zone chondrocytes (GCs). In this study, we examine the role of the 1, 25(OH)2D3-mVDR in chondrocyte physiology and provide evidence for the existence of a specific membrane receptor for 24, 25-dihydroxyvitamin D3 (24,25(OH)2D3-mVDR). Fourth-passage cultures of growth plate chondrocytes at two distinct stages of endochondral development, resting zone (RC) and growth zone (GC) cells, were used to assess the role of the mVDR in cell proliferation, PKC activation, and proteoglycan sulfation. To preclude the involvement of the nuclear vitamin D receptor (nVDR), we used hybrid analogs of 1, 25(OH)2D3 with <0.1% affinity for the nVDR (2a, 1alpha-CH2OH-3beta-25D3; 3a, 1alpha-CH2OH-3beta-20-epi-22-oxa-25D3; and 3b, 1beta-CH2OH-3alpha-20-epi-22-oxa-25D3). To determine the involvement of the mVDR, we used an antibody generated against the highly purified 1,25(OH)2D3 binding protein from chick intestinal basolateral membranes (Ab99). Analog binding to the mVDR was demonstrated by competition with [3H]1,25(OH)2D3 using matrix vesicles (MVs) isolated from cultures of RC and GC cells. Specific recognition sites for 24,25(OH)2D3 in RC MVs were demonstrated by saturation binding analysis. Specific binding of 24,25(OH)2D3 was also investigated in plasma membranes (PMs) from RC and GC cells and GC MVs. In addition, we examined the ability of Ab99 to block the stimulation of PKC by analog 2a in isolated RC PMs as well as the inhibition of PKC by analog 2a in GC MVs. Like 1,25(OH)2D3, analogs 2a, 3a, and 3b inhibit RC and GC cell proliferation. The effect was dose dependent and could be blocked by Ab99. In GC cells, PKC activity was stimulated maximally by analogs 2a and 3a and very modestly by 3b. The effect of 2a and 3a was similar to that of 1, 25(OH)2D3 and was blocked by Ab99, whereas the effect of 3b was unaffected by antibody. In contrast, 2a was the only analog that increased PKC activity in RC cells, and this effect was unaffected by Ab99. Analog 2a had no effect on proteoglycan sulfation in RC cells, whereas analogs 3a and 3b stimulated it and this was not blocked by Ab99. Binding of [3H]1,25(OH)2D3 to GC MVs was displaced completely with 1,25(OH)2D3 and analogs 2a, 3a, and 3b, but 24, 25(OH)2D3 only displaced 51% of the bound ligand. 24,25(OH)2D3 displaced 50% of [3H]1,25(OH)2D3 bound to RC MVs, but 2a, 3a, and 3b displaced <50%. Scatchard analysis indicated specific binding of 24, 25(OH)2D3 to recognition sites in RC MVs with a Kd of 69.2 fmol/ml and a Bmax of 52.6 fmol/mg of protein. Specific binding for 24, 25(OH)2D3 was also found in RC and GC PMs and GC MVs. GC membranes exhibited lower specific binding than RC membranes; MVs had greater specific binding than PMs in both cell types. 2a caused a dose-dependent increase in PKC activity of RC PMs that was unaffected by Ab99; it inhibited PKC activity in GC MVs, and this effect was blocked by Ab99. The results indicate that the 1, 25(OH)2D3 mVDR mediates the antiproliferative effect of 1,25(OH)2D3 on chondrocytes. It also mediates the 1,25(OH)2D3-dependent stimulation of PKC in GC cells, but not the 2a-dependent increase in RC PKC activity, indicating that 24,25(OH)2D3 mediates its effects through a separate receptor. This is supported by the failure of Ab99 to block 2a-dependent stimulation of PKC in isolated PMs. The data demonstrate for the first time the presence of a specific 24, 25(OH)2D3 mVDR in endochondral chondrocytes and show that, although both cell types express mVDRs for 1,25(OH)2D3 and 24,25(OH)2D3, their relative distribution is cell maturation-dependent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/jbmr.1999.14.6.856 | DOI Listing |
Front Plant Sci
January 2025
College of Agriculture and Biology, Liaocheng University, Liaocheng, China.
The wall-associated kinase (WAK) gene family encodes functional cell wall-related proteins. These genes are widely presented in plants and serve as the receptors of plant cell membranes, which perceive the external environment changes and activate signaling pathways to participate in plant growth, development, defense, and stress response. However, the WAK gene family and the encoded proteins in soybean (Glycine max (L.
View Article and Find Full Text PDFExtracell Vesicle
December 2024
The Jared Grantham Kidney Institute at the University of Kansas Medical Center, Department of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS 66160, USA.
Autosomal dominant polycystic kidney (ADPKD) disease is the commonest genetic cause of kidney failure (affecting 1:800 individuals) and is due to heterozygous germline mutations in either of two genes, and . Homozygous germline mutations in are responsible for autosomal recessive polycystic kidney (ARPKD) disease a rare (1:20,000) but severe neonatal disease. The products of these three genes, (polycystin-1 (PC1 4302(3)aa)), (polycystin-2 (PC2 968aa)) and (fibrocystin (4074aa)) are all present on extracellular vesicles (EVs) termed, PKD-exosome-like vesicles (PKD-ELVs).
View Article and Find Full Text PDFRSC Med Chem
January 2025
Institute of Pharmaceutical Science, King's College London Stamford Street London SE1 9NH UK +44 (0) 20 7848 9532.
-Formyl peptide receptors (FPRs) are membrane receptors that are abundantly expressed in innate immune cells, including neutrophils and platelets, demonstrating potential new targets for immune system regulation and the treatment of inflammatory conditions. We report here the development and bio-physical validation of new FPR imaging agents as effective tools to track FPR distribution, localisation and functions, ultimately helping to establish FPR exact roles and functions in pathological and physiological conditions. The new series of probes feature a small molecule-based FPR address system conjugated to suitable fluorophores, resulting in highly specific FPR agents, including a partial agonist endowed with high affinity ( low/sub-nanomolar potency) on FPR-transfected cells and human neutrophils.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland.
Post-traumatic epilepsy (PTE) is one of the most common life-quality reducing consequences of traumatic brain injury (TBI). However, to date there are no pharmacological approaches to predict or to prevent the development of PTE. The P2X7 receptor (P2X7R) is a cationic ATP-dependent membrane channel that is expressed throughout the brain.
View Article and Find Full Text PDFLeukemia
January 2025
Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
Multiple myeloma (MM) remains an incurable hematological malignancy that necessitates the identification of novel therapeutic strategies. Here, we report that intracellular levels of very long chain fatty acids (VLCFAs) control the cytotoxicity of MM chemotherapeutic agents. Inhibition of VLCFA biosynthesis reduced cell death in MM cells caused by the proteasome inhibitor, bortezomib.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!