In spite of several reports about suppressive effects of volatile anesthetics on somatosensation, their neuronal mechanisms are largely unknown. The present study investigates somatosensory impulse transmission at the thalamic level in rats under varied concentrations of isoflurane by recordings of neuronal responses to mechanical stimulation of the body surface. Single-unit recordings of thalamo-cortical relay neurons (TCNs, third order neurons; n=28) and presumed trigemino-thalamic fibers (TTFs, second order neurons; n=7) were performed in the ventral posteromedial nucleus. Functional response characteristics were quantified following defined tactile stimulation (trapezoidal or vibratory deflection of sinus hairs or fur) applied to the neuronal receptive fields. End-tidal isoflurane concentration was increased in steps of 0.2% between 0.6% (baseline) and 2.0%. The response activity in all TCNs studied was suppressed in a dose-dependent manner (2.0% isoflurane decreased responses to 3. 5+/-1.1% of baseline; mean+/-S.E.M.); the response activity in TTFs was much less affected (decrease to 55.0+/-8.2%). Suppression of ongoing activity, however, was similar for both, TCNs and TTFs. Furthermore, in TCNs, the response characteristics changed with increasing isoflurane between 1.0% and 1.8%: tonic and sustained responses were converted to phasic on-responses. In contrast, the tonic and sustained response characteristics of TTFs were preserved even at higher isoflurane concentrations. The results indicate that isoflurane attenuates the output of somatosensory signals in the specific nucleus of the rat's thalamus, while its input is only marginally affected. The observed changes of thalamic neuronal response characteristics, at least in part, may cause the loss in sensory discrimination observed during general anesthesia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(99)01341-4 | DOI Listing |
Clin Genet
January 2025
NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, ChangSha, China.
An increasing number of patients utilizing in vitro fertilization (IVF) and assisted reproductive technology (ART) are characterized as impaired or poor ovarian responders (PORs). Owing to its unclear molecular etiology, the management of patients with age-related ovarian characteristics remains a controversial and complex clinical concern. Therefore, it is important to identify and understand the etiological causes behind POR to develop more effective and efficient management strategies for these patients.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.
View Article and Find Full Text PDFSmall
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells.
View Article and Find Full Text PDFSmall
January 2025
Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.
Nanomaterials with unparalleled physical and chemical attributes have become a cornerstone in the field of nanomedicine delivery. These materials can be engineered into various functionalized nanocarriers, which have become the focus of research. Stimulus-responsive nanodrug delivery systems (SRDDS) stand out as a sophisticated class of nanocarriers that can release drugs in response to environmental cues.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China.
Metal halide perovskites (MHPs) are commonly used in polarization-sensitive photodetectors (PDs) for applications such as polarization imaging, remote sensing, and optical communication. Although various methods exist to adjust the polarization-sensitive photocurrent, a universal and effective approach for continuous control of MHPs' optoelectronic and polarized properties is lacking. A universal strategy to electrically modulate the polarization ratio (PR) of self-powered polarized PDs using the ferro-pyro-phototronic effect (FPPE) in 2D perovskites is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!