The maintenance of Borrelia burgdorferi in a population of Peromyscus leucopus was investigated from 202 mark and recapture mice and 61 mice that were removed from a site in Baltimore County, Maryland. Borrelia burgdorferi infection was detected by culture and polymerase chain reaction (PCR) of ear tissue, and exposure to the spirochete was quantified by serology. Overall prevalence of B. burgdorferi, as determined by culture and PCR of ear tissue at first capture, was 25% in the longitudinal sample and 42% in the cross-sectional sample. Significantly more juvenile mice were captured in the longitudinal sample (18%) than in the cross-sectional sample (0%). Among 36 captured juvenile mice, only one was infected with B. burgdorferi; this contributed to a significant trend for infection with B. burgdorferi with age. Recovery from infection with B. burgdorferi was not detected among 77 mice followed for an average of 160 days. The incidence rate of infection with B. burgdorferi was 10 times greater in mice captured during two periods of high risk of exposure to nymphal Ixodes scapularis ticks compared with a period of low risk. Maintenance of B. burgdorferi in this population was dependent on indirect transmission of the organism from infected ticks to susceptible mice and development of chronic infection with the spirochete, which had no measurable effect on the survival of infected mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4269/ajtmh.1999.60.598 | DOI Listing |
Front Parasitol
January 2024
Department of Biology, McGill University, Montreal, QC, Canada.
With climate and land use changes, tick-borne pathogens are expected to become more widely distributed in Canada. Pathogen spread and transmission in this region is modulated by changes in the abundance and distribution of tick and host populations. Here, we assessed the relationships between pathogens detected in and mammal hosts at sites of different levels of disease risk using data from summer field surveys in Ontario and Quebec, Canada.
View Article and Find Full Text PDFFront Antibiot
May 2024
Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
Recent reports from the Centers for Disease Control and Prevention approximate 500,000 cases of Lyme disease in the United States yearly, a significant economic burden on the healthcare system. The standard treatment for Lyme disease includes broad-spectrum antibiotics, which may be administered for extensive periods of time and result in significant impacts to the patient. Recently, we demonstrated that , the causative agent of Lyme disease, is uniquely dependent upon peptide acquisition via an oligopeptide transport (Opp) system.
View Article and Find Full Text PDFFront Antibiot
May 2024
Division of Emergency Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.
Background: The 2018 Infectious Disease Committee of the American Academy of Pediatrics stated that up to 3 weeks or less of doxycycline is safe in children of all ages. Our goal was to examine trends in doxycycline treatment for children with Lyme disease.
Methods: We assembled a prospective cohort of children aged 1 to 21 years with Lyme disease who presented to one of eight participating Pedi Lyme Net centers between 2015 and 2023.
Eur J Neurol
January 2025
Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan.
Background And Purpose: Clinical manifestations of Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato (Bbsl), include erythema migrans, Lyme neuroborreliosis (LNB), carditis, and arthritis. LB is a notifiable disease in Japan with <30 surveillance-reported LB cases annually, predominately from Hokkaido Prefecture. However, LB, including LNB, may be under-diagnosed in Japan since diagnostic tests are not readily available.
View Article and Find Full Text PDFInt J Parasitol Parasites Wildl
April 2025
British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, British Columbia, V5Z 4R4, Canada.
As per published literature, the tick is the primary Lyme disease vector in British Columbia (BC), while the tick species is the dominant vector on the East Coast of Canada, with no . presence seen in BC. However, a recent publication reported presence of in BC which initiated this study to determine the accuracy of the microscopic identification of ticks received in the BC Centre for Disease Control (BCCDC) Public Health Laboratory and compare morphologic methods to molecular methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!