The equilibria between metarhodopsins I and II (MI and MII) and the binding of MII to retinal G protein (G) were investigated, using the dual wavelength absorbance response of rod disk membrane (RDM) suspensions to a series of small bleaches, together with a nonlinear least-squares fitting procedure that decouples the two reactions. This method has been subjected to a variety of theoretical and experimental tests that establish its validity. The two equilibrium constants, the amount of active G protein (that can bind to and stabilize MII) and the fraction bleached by the flash, have been determined without a priori assumptions about these values, at temperatures between 0 and 15 degrees C and pHs from 6.2 to 8.2. Binding of G to MII in normal RDM exhibits 1:1 stoichiometry (not cooperative), relatively weak, 2-4 x 10(4) M-1 affinity on the membrane, with a pH dependence maximal at pH 7.6, and a low thermal coefficient. The reported amount of active G remained constant even when its binding constant was reduced more than 10-fold at low pH. The method can readily be applied to the binding of MII to other proteins or polypeptides that stabilize its conformation as MII. It appears capable of determining many of the essential physical constants of G protein coupled receptor interaction with immediate signaling partners and the effect of perturbation of environmental parameters on these constants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi9827666DOI Listing

Publication Analysis

Top Keywords

binding mii
12
rod disk
8
amount active
8
mii
6
binding
5
temperature dependence
4
dependence metarhodopsin
4
metarhodopsin i-metarhodopsin
4
i-metarhodopsin equilibrium
4
equilibrium binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!