Transcriptional regulation in human immunodeficiency virus type 1 (HIV-1) requires specific interactions of Tat protein with the trans-activation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5'-ends of all HIV-1 mRNAs. We have used a site-specific cross-linking method based on 4-thio-uracil (4-thioU) photochemistry to determine the interactions of a Tat peptide, Tat(38-72), with the loop region of TAR RNA under physiological conditions. A TAR RNA construct with a single 4-thioU residue at positions U31 in the loop sequence was synthesized by chemical methods. Upon UV irradiation, 4-thioU at U31 formed a covalent cross-link with the Tat peptide. We did not observe any RNA-RNA cross-link formation. Competition experiments revealed that a specific RNA-protein complex formation was necessary for the RNA-protein cross-linking reaction. Our results demonstrate that, during RNA-protein recognition, the Tat peptide is located in close proximity to O4 of U31 in the TAR RNA loop sequence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc980145j | DOI Listing |
Indian J Nephrol
June 2024
Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, India.
Background: Nephrotic syndrome is a common cause of kidney diseases in children. Many studies have examined the association of microRNAs playing potential roles in many pathophysiological functions. We investigated the expression pattern of the microRNAs miR-17-5P, miR-155p, miR-424-5p in children with steroid sensitive nephrotic syndrome (SSNS) and steroid resistance nephrotic syndrome (SRNS), along with the healthy subjects.
View Article and Find Full Text PDFBrain
January 2025
State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China.
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease, with most sporadic cases lacking clear genetic causes. Abnormal pre-mRNA splicing is a fundamental mechanism in neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) loss-of-function (LOF) causes widespread RNA mis-splicing events in ALS.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA. Electronic address:
TAR DNA-binding protein (TDP-43) and Metastasis Associated Lung Adenocarcinoma Transcript (MALAT1) RNA are both abundantly expressed in the human cell nucleus. Increased interaction of TDP-43 and MALAT1, as well as dysregulation of TDP-43 function, was previously identified in brain samples from patients with neurodegenerative disease compared to healthy brain tissues. We hypothesized that TDP-43 function may depend in part on MALAT1 expression levels.
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan; Mount Fuji Research Institute, Yamanashi Prefectural Government, Yamanashi, Japan. Electronic address:
Amyotrophic lateral sclerosis (ALS) is characterized by the mislocalization and abnormal deposition of TAR DNA-binding protein 43 (TDP-43). This protein plays important roles in RNA metabolism and transport in motor neurons and glial cells. In addition, abnormal iron accumulation and oxidative stress are observed in the brain and spinal cord of patients with ALS exhibiting TDP-43 pathology and in animal models of ALS.
View Article and Find Full Text PDFCell Rep
January 2025
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan. Electronic address:
The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!