Synaptic-like microvesicles in mammalian pinealocytes.

Int Rev Cytol

Medizinische Hochschule Hannover, Germany.

Published: July 1999

The recent deciphering of the protein composition of the synaptic vesicle membrane has led to the unexpected identification of a compartment of electron-lucent microvesicles in neuroendocrine cells which resemble neuronal synaptic vesicles in terms of molecular structure and function. These vesicles are generally referred to as synaptic-like microvesicles (SLMVs) and have been most intensively studied in pancreatic beta-cells, chromaffin cells of the adrenal medulla, and pinealocytes of the pineal gland. This chapter focuses on the present knowledge of SLMVs as now well-established constituents of mammalian pinealocytes. I review the results of morphological, immunocytochemical, and biochemical studies that were important for the characterization of this novel population of secretory vesicles in the pineal organ. The emerging concept that SLMVs serve as a device for intercellular communication within the pineal gland is outlined, and unanswered questions such as those pertaining to the physiological function and regulation of pineal SLMVs are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0074-7696(08)60160-6DOI Listing

Publication Analysis

Top Keywords

synaptic-like microvesicles
8
mammalian pinealocytes
8
pineal gland
8
microvesicles mammalian
4
pinealocytes deciphering
4
deciphering protein
4
protein composition
4
composition synaptic
4
synaptic vesicle
4
vesicle membrane
4

Similar Publications

Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating diverse neuronal functions in an activity-dependent manner. Although BDNF is synthesized primarily in neurons, astrocytes can also supply BDNF through various routes, including the recycling of neuron-derived BDNF. Despite accumulating evidence for astrocytic BDNF uptake and resecretion of neuronal BDNF, the detailed mechanisms underlying astrocytic BDNF recycling remain unclear.

View Article and Find Full Text PDF

Antibody functionalized curcuma-derived extracellular vesicles loaded with doxorubicin overcome therapy-induced senescence and enhance chemotherapy.

J Control Release

January 2025

Department of General Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China; Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China. Electronic address:

Conventional cancer treatments often induce a sustained DNA damage response (DDR) in tumor cells, leading to therapy-induced senescence (TIS), characterized by permanent cell cycle arrest and resistance to apoptosis. These senescent cells secrete senescence-associated secretory phenotypes (SASP), which can promote tumor progression and create an immunosuppressive microenvironment. This study introduces a novel approach to enhance chemotherapy efficacy by using functionalized curcuma-derived extracellular vesicles (DR5-CNV/DOX) to target and eliminate senescent tumor cells and inhibit their SASP.

View Article and Find Full Text PDF

This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes.

View Article and Find Full Text PDF

Dense-core vesicles (DCVs) are found in various types of cells, such as neurons, pancreatic β-cells, and chromaffin cells. These vesicles release transmitters, peptides, and hormones to regulate diverse functions, such as the stress response, immune response, behavior, and blood glucose levels. In traditional electron microscopy after chemical fixation, it is often reported that the dense cores occupy a portion of the vesicle towards the center and are surrounded by a clear halo.

View Article and Find Full Text PDF

Objective: The neuropeptide calcitonin gene-related peptide (CGRP) has been established to be a key signaling molecule in migraine, but little is known about the differences between the two isoforms: αCGRP and βCGRP. Previous studies have been hampered by their close similarity, making the development of specific antibodies nearly impossible. In this study we sought to test the hypothesis that αCGRP and βCGRP localize differently within the neurons of the mouse trigeminal ganglion (TG), using αCGRP knock out (KO) animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!