A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acute intravenous leptin infusion increases glucose turnover but not skeletal muscle glucose uptake in ob/ob mice. | LitMetric

The mouse ob gene encodes leptin, an adipocyte hormone that regulates body weight and energy expenditure. Leptin has potent metabolic effects on fat and glucose metabolism. A mutation of the ob gene results in mice with severe hereditary obesity and diabetes that can be corrected by treatment with the hormone. In lean mice, leptin acutely increases glucose metabolism in an insulin-independent manner, which could account, at least in part, for some of the antidiabetic effect of the hormone. To investigate further the acute effect of leptin on glucose metabolism in insulin-resistant obese diabetic mice, leptin (40 ng x g(-1) x h(-1)) was administered intravenously for 6 h in C57Bl/6J ob/ob mice. Leptin increased glucose turnover and stimulated glucose uptake in brown adipose tissue (BAT), brain, and heart with no increase in heart rate. A slight increase in all splanchnic tissues was also noticed. Conversely, no increase in skeletal muscle or white adipose tissue (WAT) glucose uptake was observed. Plasma insulin concentration increased moderately but neither glucose, glucagon, thyroid hormones, growth hormone, nor IGF-1 levels were different from phosphate-buffered saline-infused C57Bl/6J ob/ob mice. In addition, leptin stimulated hepatic glucose production, which was associated with increased glucose-6-phosphatase activity. Conversely, PEPCK activity was rather diminished. Interestingly, hepatic insulin receptor substrate (IRS)1-associated phosphatidylinositol 3-kinase activity was slightly elevated, but neither the content of glucose transporter GLUT2 nor the phosphorylation state of the insulin receptor and IRS-1 were changed by acute leptin treatment. Hepatic lipid metabolism was not stimulated during the acute leptin infusion, since the content of triglycerides, glycerol, and citrate was unchanged. These findings suggest that in ob/ob mice, the antidiabetic antiobesity effect of leptin could be the result of a profound alteration of glucose metabolism in liver, BAT, heart, and consequently, glucose turnover. Insulin resistance of skeletal muscle and WAT, while not affected by acute leptin treatment, could also be corrected in the long term and account for some of leptin's antidiabetic effects.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.48.6.1264DOI Listing

Publication Analysis

Top Keywords

ob/ob mice
16
glucose metabolism
16
acute leptin
16
glucose
13
leptin
12
glucose turnover
12
skeletal muscle
12
glucose uptake
12
mice leptin
12
leptin infusion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!