One of the impacts of disease is its effect on milk production. In the present study the effect of an outbreak of bovine herpesvirus type 1 on milk production at the herd level of certified bovine herpesvirus type 1-free dairy farms was modeled. The objective was to study several linear models to quantify the effects of a bovine herpesvirus type 1 outbreak on milk production accounting for the repeated measurements and incorporating our assumptions about the most likely duration of effects of this virus. Because milk production is measured at regular intervals, the data consisted of repeated measurements at the herd and cow levels. A marginal model, a subject-specific random-effect model, and a transition model were developed. The effect of a bovine herpesvirus type 1 outbreak was statistically significant in the random-effect model, and this model fitted the investigated farms best. However, a transition model might be a better model for generalizing the results to the whole population of Dutch dairy farms. The effect of a bovine herpesvirus type 1 outbreak on milk production derived from the random-effect model amounted to, on average, a loss of 0.92 kg of milk per cow per day during a period of 9 wk. The milk production loss varied from almost none to 2 kg of milk per cow per day. This reduction resulted in an average loss of Dfl 372 (Dfl1 = $US $0.50) with lower and upper confidence limits of, respectively, Dfl 12 and Dfl 730 per bovine herpesvirus type 1 outbreak.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.S0022-0302(99)75313-0DOI Listing

Publication Analysis

Top Keywords

bovine herpesvirus
28
herpesvirus type
28
milk production
28
type outbreak
16
dairy farms
12
random-effect model
12
milk
9
outbreak bovine
8
dutch dairy
8
outbreak milk
8

Similar Publications

Rapid, sensitive, and visible RPA-LFD assay for BoHV-1 and BoHV-5.

Microbiol Spectr

January 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.

Unlabelled: Bovine herpesvirus (BoHV) infection poses a significant threat to the healthy development of the cattle industry. BoHV-1 primarily causes infectious bovine rhinotracheitis, while BoHV-5 is associated with bovine necrotic meningoencephalitis. These two pathogens not only exhibit a high correlation in antigenicity and genetic background but, more importantly, can establish latent infections within the bovine ganglion.

View Article and Find Full Text PDF

Background: Bovine respiratory disease complex (BRDC) is a widely distributed and multifactorial syndrome, leading to significant economic losses to the cattle industry. Many viruses are considered causative agents of BRDC, including bovine herpesvirus 1 (BoHV-1), bovine respiratory syncytial virus (BRSV), and parainfluenza virus 3 (PI-3). This study aimed to determine the seroprevalence of BoHV-1, BRSV, and PI-3 in serum samples collected from cattle in Villavicencio, Colombia.

View Article and Find Full Text PDF

The objective was to determine the effects of injectable trace minerals (ITM, containing Se, Cu, Zn & Mn) administered at the time of primary intranasal (IN) modified-live virus (MLV) vaccination of young dairy calves on the serum neutralizing antibody (SNA) titers to Bovine herpes virus 1 (BHV1), Bovine respiratory syncytial virus (BRSV), and Bovine Parainfluenza type 3 virus (BPIV); cytokine expression in peripheral white blood cells, and BHV1-specific IgA titers in nasal secretions following the vaccination. A total of 60 calves (1 month old) were administered an IN MLV vaccine containing BHV1, BRSV, BPIV (Inforce 3) and randomly assigned to one of two experimental groups: ITM (n = 30; Multimin90, containing Se, Cu, Zn, and Mn) or SAL (n = 30; sterile saline). There was a consistent decay in virus-specific SNA titers in both groups.

View Article and Find Full Text PDF

Enhanced immunogenicity of a BoHV-1 gG-/tk- vaccine.

Vaccine

January 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of development of veterinary diagnostic products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China. Electronic address:

Bovine herpesvirus type 1 (BoHV-1) is a widespread respiratory infection that significantly impacts cattle health worldwide. To address this issue in China, we previously developed a novel double gene-deleted vaccine targeting gG and tk. In this study, we further evaluated the efficacy of this vaccine by challenging vaccinated cattle with a prevalent wild-type BoHV-1 strain and comparing its effectiveness against a commercially available inactivated BoHV-1 vaccine.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!